
UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

NETAPP INC., RACKSPACE US INC.,
Petitioners

v.

REALTIME DATA LLC
Patent Owner.

Patent No. 7,161,506

Inter Partes Review No. IPR2017-____
__

DECLARATION OF DANIEL HIRSCHBERG

NetApp; Rackspace Exhibit 1005 Page 1

2
dn-193685

I, Daniel Hirschberg, make this declaration in connection with the

proceeding identified above.

I. Introduction

1. I have been retained by counsel for NetApp Inc. and Rackspace US Inc. as a

technical expert in connection with the proceeding identified above. I submit this

declaration in support of NetApp’s and Rackspace’s Petition for Inter Partes

Review of United States Patent No. 7,161,506 (“the ’506 patent”).

2. I am being paid an hourly rate for my work on this matter. I do not have any

personal or financial stake or interest in the outcome of the present proceeding.

II. Qualifications

3. My resume is attached to this declaration as Exhibit A.

4. I earned my Ph.D. in Computer Science from Princeton University in 1975.

I also earned a MSE and MA from Princeton University in 1973. I also earned a

BE in Electrical Engineering from City College of New York in 1971.

5. Since 2003, I have been a Professor of Computer Science and EECS at

University of California, Irvine (UCI). Prior to that, I was a professor in various

departments and held various other positions at UCI. I also held the position of

Assistant Professor of Electrical Engineering at Rice University from 1975 through

1981. As a professor at UCI, I have taught courses in computer science topics,

including a course covering compression techniques.

NetApp; Rackspace Exhibit 1005 Page 2

3
dn-193685

6. In addition to my roles with UCI and Rice University, I have also provided

various consulting services over the years. For example, I have consulted on the

design of compression/decompression techniques. I have also provided technical

expert services in intellectual property cases covering various technologies,

including compression.

7. I have also extensively published in the area of compression and participated

in professional organizations and conferences focused on compression

technologies. For example, publications nos. B2, J25, J29, J30, J35, J36, J43, J47,

C15, C16, C19, C21, C22, and C31 all relate to lossless data compression.

III. Materials Considered

8. In preparing this declaration, I have reviewed, among other things, the

following materials:

a) the ’506 patent;

b) the prosecution history for the ’506 patent, including reexamination

prosecution history;

c) NetApp’s and Rackspace’s petition for inter partes review of the ’506

patent (the “Petition”) to which my declaration relates (I generally

agree with the statements regarding the technical disclosures and

characterizations of the ’506 patent and prior art contained in the

Petition); and

NetApp; Rackspace Exhibit 1005 Page 3

4
dn-193685

d) the exhibits to the Petition (below, I use the names defined in the

Petition’s exhibit list to refer to the exhibits) and any other documents

cited below.

IV. Legal Standards

A. Claim Construction

9. I have been informed that, when construing claim terms in an unexpired

patent, a claim subject to post grant review receives the broadest reasonable

construction in light of the specification of the patent in which it appears. I have

also been informed that the ’506 patent is likely to expire during any IPR

proceeding instituted based on the Petition. I understand that under this

circumstance, the claims terms are construed according to their plain meaning in

light of the intrinsic record.

B. Obviousness

10. I understand that a patent claim may also be invalid if the claimed invention

would have been obvious to a person of ordinary skill in the art at the time of the

claim’s effective filing date. I understand that an invention may be obvious if a

person of ordinary skill in the art with knowledge of the prior art would have

conceived the claimed invention, even if all of the limitations of the claim cannot

be found in a single prior art reference.

NetApp; Rackspace Exhibit 1005 Page 4

5
dn-193685

11. I understand that, in assessing whether a claimed invention would have been

obvious, the following factors are considered.

12. First, I understand that the level of ordinary skill that a person working in the

field of the claimed invention would have had at its effective filing date must be

considered.

13. Second, I understand that the scope and content of the prior art must be

considered. I understand that, to be considered as prior art, a reference must be

reasonably related to the claimed invention, which means that the reference is in

the same field as the claimed invention or is from another field to which a person

of ordinary skill in the art would refer to solve a known problem.

14. Third, I understand that the differences, if any, that existed between the prior

art and the claimed invention must be considered. I understand that the

determination of such differences should focus on the claimed invention as a

whole.

15. I understand that it is not sufficient to prove a patent claim obvious to show

that each of its limitations was independently known in the prior art but that there

also must have been a reason for a person of ordinary skill in the art to have

combined or modified the elements or concepts from the prior art in the same way

as in the claimed invention.

NetApp; Rackspace Exhibit 1005 Page 5

6
dn-193685

16. In assessing whether such a reason existed, I understand that the following

may be considered: (i) whether the combination or modification was merely the

predictable result of using prior art elements according to their known functions;

(ii) whether the claimed invention provided an obvious solution to a known

problem in the art; (iii) whether the claimed invention applied a known technique

that had been used to improve a similar device or method in a similar way; (iv)

whether the prior art teaches or suggests making the combination or modification

claimed in the patent; (v) whether the prior art teaches away from combining

elements in the claimed invention; (vi) whether it would have been obvious to try

the combination or modification, such as when there is a design need or market

pressure to solve a problem and there are a finite number of identified, predictable

solutions; and (vii) whether the combination or modification resulted from design

incentives or other market forces.

17. I understand that, when considering whether a claimed invention was

obvious, one should be careful not to use the benefit of hindsight and that, instead,

one should put oneself in the position of a person of ordinary skill in the art as of

the effective filing date of the claimed invention and should not consider what is

known today or what is learned from the teaching of the patent.

NetApp; Rackspace Exhibit 1005 Page 6

7
dn-193685

V. The ’506 Patent

18. The ’506 patent, published January 9, 2007, is entitled “Systems and

Methods for Data Compression Such as Content Dependent Data Compression.”

A. Priority Date

19. I understand that page 1 of the ’506 patent include a priority chain with an

earliest date of December 11, 1998 (for U.S. Patent No. 6,195,024 (the “’024

patent”)).

20. I understand that for the ’506 patent to be entitled to a priority date of

December 11, 1998, the specification of the application that issued as the ’024

patent must have provided sufficient description of the claims of the ’506 patent

such that a person of ordinary skill in the art would have understood that the named

inventors were in possession of the claimed technology.

21. I reviewed the application that issued as the ’024 patent. The application

only describes content independent data compression. The ’506 patent’s claims

include a determined of whether to apply content independent data compression or

content dependent data compression. Accordingly, a person of ordinary skill in the

art reviewing the application filed on December 11, 1998 that issued as the ’024

patent would not have understood the named inventor to have been in possession

of the technology claimed in the ’506 patent as of December 11, 1998.

NetApp; Rackspace Exhibit 1005 Page 7

8
dn-193685

22. The first time that the concept of content dependent data compression

appears in any of the patent applications in the priority chain is October 29, 2001

when the application that issued as U.S. Patent No. 6,624,761 was filed. In that

application, FIGS. 13-18 and associated text were added, which are the portions of

the ’506 patent that describe choosing between content dependent data

compression and content independent data compression. Accordingly, this is the

earliest possible priority date for the claims of the ’506 patent.

B. Generally

23. The ’506 patent discloses data compression “using a combination of content

independent data compression and content dependent data compression.” ’506

patent at Abstract. FIGS. 13A and 13B, reproduced below, depict an example of

the ’506 patent’s system.

NetApp; Rackspace Exhibit 1005 Page 8

9
dn-193685

NetApp; Rackspace Exhibit 1005 Page 9

10
dn-193685

24. The system described in the ’506 patent includes an input data buffer that

buffers a data stream after passing through a data block counter that counts the

sizes of data blocks in the data stream. ’506 patent at 16:8-28. The content

dependent data recognition module “analyzes the incoming data stream to

recognize data types, data structures, data block formats, file substructures, file

types, and/or any other parameters that may be indicative of either the data

type/content of a given data block or the appropriate data compression algorithm or

algorithms (in serial or in parallel) to be applied.” ’506 patent at 16:29-35.

25. For each data block, if the above analysis recognizes the data block, the data

block is routed to a content dependent encoder module. ’506 patent at 16:38-40. If

the analysis does not recognize the data block, the data block is sent to a content

independent encoder module. ’506 patent at 16:40-42.

26. In the content dependent encoder module, a data block is compressed using a

subset of available encoders D1...Dm producing compressed data block versions

(e.g., C1...Cm). ’506 patent at 16:43-57. The compression ratios (e.g., R1...Rm)

are calculated for each of the compressed versions, where a ratio is the size of the

uncompressed data block divided by the size of the compressed data block (i.e., a

higher compression ratio indicates more compression). ’506 patent at 17:50-58.

27. The compression encoder that produces the highest compression ratio is

chosen. ’506 patent at 19:11-28. If that highest compression ratio is less than a

NetApp; Rackspace Exhibit 1005 Page 10

11
dn-193685

minimum predefined threshold, then the original uncompressed data block is

output with an associated descriptor Null (meaning no compression used).

’506 patent at 18:66-19:10. Otherwise, a compressed block with descriptor that

identifies the compression technique that was used is output. ’506 patent at

19:24-28.

B. State of the Art

28. In general, well before March 1999, the concepts described and claimed in

the ’506 patent were widely known and implemented in the computer industry.

For example, in D.A. Lelewer and D.S. Hirschberg, “Data compression,”

Computing Surveys 19:3 (1987) 261-297 (“Lelewer”) (Ex. 1015), my co-author

and I explain that the benefits of compression were recognized in many areas, such

as communications and archival systems. It was also widely recognized that

different types of compression techniques were more suitable for certain types of

data.

Many of the methods discussed in this paper are
implemented in production systems. The UNIX utilities
compact and compress are based on methods discussed in
Sections 4 and 5, respectively [UNIX 1984]. Popular file
archival systems such as ARC and PKARC use
techniques presented in Sections 3 and 5 [ARC 1986;
PKARC 1987]. The savings achieved by data
compression can be dramatic; reduction as high as 80% is
not uncommon [Reghbati 1981]. Typical values of
compression provided by compact are text (38%), Pascal
source (43%), C source (36%), and binary (19%).

NetApp; Rackspace Exhibit 1005 Page 11

12
dn-193685

Compress generally achieves better compression (50-
60% for text such as source code and English) and takes
less time to compute [UNIX 1984]. (Lelewer at 2.)

29. Using different compression methods on different types of data blocks was

also widely implemented long before the priority date of the ’506 patent. For

example, the commonly used and widely distributed program PKZIP supported

using different compression techniques for different files. The specification for the

PKZIP file format (https://www.pkware.com/documents/APPNOTE/APPNOTE-

1.0.txt (attached as Exhibit B to this declaration)) describes a “compression

method” field in the header that describes the compression method used for that

file. As noted in the APPNOTE file for version 1.0, this version was released in

1990.

Overall zipfile format:
[local file header + file data + data_descriptor] . . .
[central directory] end of central directory record

A. Local file header:
local file header signature 4 bytes (0x04034b50)
version needed to extract 2 bytes
general purpose bit flag 2 bytes
compression method 2 bytes
last mod file time 2 bytes
last mod file date 2 bytes

 crc-32 4 bytes
compressed size 4 bytes
uncompressed size 4 bytes
filename length 2 bytes
extra field length 2 bytes
filename (variable size)
extra field (variable size)

NetApp; Rackspace Exhibit 1005 Page 12

13
dn-193685

compression method: (2 bytes)

(see accompanying documentation for algorithm
descriptions)

0 - The file is stored (no compression)
1 - The file is Shrunk
2 - The file is Reduced with compression factor 1
3 - The file is Reduced with compression factor 2
4 - The file is Reduced with compression factor 3
5 - The file is Reduced with compression factor 4
6 - The file is Imploded
7 - Reserved for Tokenizing compression algorithm
8 - The file is Deflated

30. PKZIP had the ability to choose file-specific compression algorithms. This

allowed for the appropriate algorithm to be applied to each file in a directory.

31. The prior art described in more detail below provides more examples

showing that the ’506 patent’s technology was well known as of the priority date

of the ’506 patent.

C. Person of Ordinary Skill in the Art

32. A person of ordinary skill in the art for the ’506 patent in October 2001

would have had an undergraduate degree in computer science, computer

engineering, electrical and computer engineering, or equivalent field and one to

three years of experience working with data compression or a graduate degree with

course work or research in the field of data compression. A person without the

undergraduate or graduate degree described above would still qualify as a person

NetApp; Rackspace Exhibit 1005 Page 13

14
dn-193685

of ordinary skill in the art if they had additional education or industry experience

that compensated for the deficiency in the requirement above.

33. I am familiar with the capabilities and skills of a person of ordinary skill in

the art. For example, I have supervised and taught graduate students who would

qualify as persons of ordinary skill in the art.

VI. CHALLENGED CLAIMS

34. I understand that claim 105 is challenged in the Petition.

35. Claim 105 is:

A computer implemented method comprising:

receiving a data block in an uncompressed form,
said data block being included in a data stream;

analyzing data within the data block to determine a
type of said data block; and

compressing said data block to provide a
compressed data block,

wherein if one or more encoders are associated to
said type, compressing said data block with at least one
of said one or more encoders,

otherwise compressing said data block with a
default data compression encoder, and

wherein the analyzing of the data within the data
block to identify one or more data types excludes
analyzing based only on a descriptor that is indicative of
the data type of the data within the data block.

NetApp; Rackspace Exhibit 1005 Page 14

15
dn-193685

VII. Claim Construction

36. My analysis below is based on meanings of the claim terms according to

their plain meaning in light of the intrinsic record. The claim constructions in the

Petition are consistent with the plain meaning in light of the intrinsic record.

VII. Prior Art Analysis

A. References

1. “Automatic Synthesis of Compression Techniques for

Heterogeneous Files,” by Hsu and Zwarico (“Hsu”) (Ex.

1002)

37. Hsu presents a technique to compress a data file by applying the “most

appropriate” compression algorithm from a suite of available algorithms to each

block of the file. Hsu’s technique works in two phases.

38. In the first phase, the system first determines for each block its type (one of

ten) and its compressibility via what Hsu calls “redundancy metrics.” If the data

block has an appropriate combination (i.e., one that has an assigned compression

algorithm) of data classification (also called a data type in Hsu) and largest

redundancy metric, then the assigned compression algorithm is tagged for the data

block by associating the data block with the assigned compression algorithm in a

compression plan. Hsu at 1109. On the other hand, if an appropriate combination

of data classification and largest redundancy metric is not identified (and no other

NetApp; Rackspace Exhibit 1005 Page 15

16
dn-193685

redundancy metric that would produce an appropriate combination is above a

metric threshold), the data block is tagged with “no compression.” Hsu at 1106.

39. The block type is determined by an extension of the Unix “file” command

that examines the first, middle, and last 512 bytes of the block and compares the

pattern of data to a collection of known data patterns. There are ten data

classifications (sometimes also referred to as “data types” in Hsu) in Hsu’s

database depicted in Table I and reproduced below with annotations to show the

different rows that represent each data classification. The entries in Table I are

chosen to provide for better compression for each combination of data

classification and redundancy metric.

NetApp; Rackspace Exhibit 1005 Page 16

17
dn-193685

40. A person of ordinary skill in the art would have recognized nine of these

data classifications (i.e., ANSI, hexadecimal, natural language, source code, audio,

low resolution graphic, high resolution graphic, high redundancy binary

executable, and object) are data classifications that have recognizable, specific

structures. See Hsu at 1103-04 for a description of the data classifications. On the

other hand, low redundancy binary does not have a specific structure. A person of

ordinary skill in the art would have recognized that Hsu’s low redundancy binary

data is a default data classification that is used when none of the other nine data

classifications are identified using the “new-file” program.

NetApp; Rackspace Exhibit 1005 Page 17

18
dn-193685

41. This understanding of how the “new-file” program works is consistent with

how the “file” program worked before the priority date of the ’506 patent.

Specifically, according to the manual page for the “file” program at that time,

“file” would output the type “data” to mean “anything else” that could not be

matched to another data type. See Manual Page for “file” Command (attached as

Exhibit C this declaration).

The first test that succeeds causes the file type to be
printed.

The type printed will usually contain one of the words
text (the file contains only ASCII characters and is
probably safe to read on an ASCII terminal), executable
(the file contains the result of compiling a program in a
form understandable to some UNIX kernel or another), or
data meaning anything else (data is usually ‘binary’ or
nonprintable).

(Bold and italics in original.) A person of ordinary skill in the art would have

understood the “low redundancy binary” data classification in Hsu to be the

equivalent of the “data” type in the unaltered version of “file.” It represents any

other binary data classification that did not match one of the other nine well-

recognized data classifications.

42. Returning to the operation of Hsu’s first phase, the compressibility of the

data block is determined by the values of three redundancy metrics representing

the degree of variation in character frequency (“MAD”), average run length

NetApp; Rackspace Exhibit 1005 Page 18

19
dn-193685

(“MRL”), and string repetition ratio (“MSR”) in the block. Each redundancy metric

is calculated by a separate statistical sampling routine and normalized using a

gamma distribution function to be a number between 0 and 10. If the metrics are

all below a threshold then the block is not compressed in order to save the

overhead of attempting to compress the data block when the redundancy metric

indicates low potential for significant compression. Otherwise, using the block

type and largest metric, the assigned compression algorithm is chosen from the

compression algorithm database. The data block is then tagged with the assigned

compression algorithm in a compression plan. If the block classification and

largest metric are not an appropriate combination in the database and none of the

other redundancy metrics are above a metric threshold, then the data block is

tagged for no compression in the compression plan in order to save on the

overhead of trying to compress the data block when the data block produced an

unexpected combination of data classification and largest redundancy metric.

43. In the second phase, Hsu’s system compresses the data block according to

the compression plan. Prior to applying the chosen compression algorithm,

adjacent blocks are merged if they are to be compressed with the same algorithm.

(Hsu at 1109.) After a data block or merged group of data blocks is compressed

with the identified compression algorithm, the compressed data block is checked

for negative compression (e.g., making sure that the compression ratio is greater

NetApp; Rackspace Exhibit 1005 Page 19

20
dn-193685

than 1). (Hsu at 1109.) If negative compression is detected, the uncompressed

data block is used and “no compression” is recorded in the compression history.

(Hsu at 1109.) Otherwise, the compressed data block is used and the appropriate

compression algorithm is recorded in the compression history. Once all of the data

blocks are processed, the compression history is prepended to the resulting data

blocks to produce the output file that can be stored.

2. U.S. Patent No. 6,253,264 (“Sebastian”) (Ex. 1012)

44. Sebastian discloses compressing different types of data sources with

different compression encoders (called “filters” in Sebastian) to produce a “format-

specific compression” system. When the type of a data source is not supported and

an associated encoder cannot be identified, a “generic” compression encoder is

used.

At the highest level, a preferred compression system in
accordance with the invention uses an architecture called
a Base-Filter-Resource (BFR) system. This approach
integrates the advantages of format-specific compression
into a general-purpose compression tool serving a wide
range of data formats. The system includes filters which
each support a specific data format, such as for Excel
XLS worksheets or Word DOC files. The base includes
the system control modules and a library used by all the
filters. The resources include routines which are used by
more than one filter, but which are not part of the base. If
a filter is installed which matches the format of the data
to be encoded, the advantages of format-specific
compression can be realized for that data. Otherwise, a
“generic” filter is used which achieves performance

NetApp; Rackspace Exhibit 1005 Page 20

21
dn-193685

similar to other non-specific data compression systems
(such as PKZip, Stacker, etc.). (Sebastian at 1:36-60
(emphasis added).)

FIG. 2 is a block diagram of a preferred encoder using a
Base-Filter-Resource (BFR) network in accordance with
the invention. The encoder 3` is based on the use of a
plurality of filters 10a, . . . , 10x, . . . , 10z which serve
specific file formats. For example, one filter 10a might
support several versions of the DBF database format,
while another filter 10z might support several versions of
the DOC format used by the Microsoft Word software
program. The individual filters provide respective
selection criteria 12 to a filter selection system 22.

The filter selection system 22 receives the source data 2
and checks the selection criteria 12a, . . . , 12x, . . . , 12z
of all filters 10a, . . . , 10x, . . . , 10z installed in the
system to see if any of them support the source data’s
format. If not, a “generic” filter is used which provides
compression performance similar to other generic
compression systems, such as Lempel-Ziv (LZ) engines.
In a particular preferred embodiment of the invention, the
generic compression system employs an SZIP engine as
described by Mr. Schindler in U.S. application Ser. No.
08/970,220 filed Nov. 14, 1997, the teachings of which
are incorporated herein by reference in their entirety. The
descriptions of the network will primarily cover the
situations in which a filter to support the data format is
successfully found. (Sebastian at 3:66-4:22 (emphasis
added).)

3. U.S. Patent No. 5,870,036 (“Franaszek”) (Ex. 1003)

45. Franaszek describes a data compression system that applies different data

compression techniques to different data blocks depending on the data type of the

data blocks. In Franaszek’s system, a data block to be compressed is checked to

NetApp; Rackspace Exhibit 1005 Page 21

22
dn-193685

determine whether a “data type” field identifies the data type of the data block. If

the “data type” field identifies a data type, a list of compression methods

corresponding to the data type (that was identified by the contents of the “data

type” field) is assigned to the data block. Franaszek at Fig. 2, 4:25-35, 5:49-54,

6:1-11. If the “data type” field does not identify the data type, a list of default

compression methods is assigned to the data block. In other words, Franaszek

teaches automatically applying a predefined default encoder from the list of

compression methods to the data block when a data type specific encoder is not

identified from the data type. Nothing in Franaszek describes how the “data type”

information for the “data type” field is determined or where it came from.

46. The system determines the “best” compression technique available by

compressing a portion of the block with each of the list of compression methods

and selecting the technique that results in the best compression ratio. This is

similar to a process used to select compression techniques in the ’506 patent.

’506 patent at 4:9-24.

47. Nothing in Franaszek limits how many compression methods are present in

the lists of compression methods (i.e., the lists of compression methods associated

with specific data types or the list of default compression methods).

In step 401, if a data type (e.g. text, image, etc.) for a
given uncompressed block B is available, in step 404 the
Compression Method List (CML) is set to a list of

NetApp; Rackspace Exhibit 1005 Page 22

23
dn-193685

compression methods that have been preselected for that
data type. Otherwise, if no data type is available, in step
407 the CML is set to a default list of compression
methods. (Franaszek at 5:49-54.)

In step 414, it is determined if a data type is available (i.e
the block includes a “data type” entry in the type field
205), If a data type is available, in steps 417, 421, 424,
and 427, the CML is expanded by replacing E with the
list (M,D1), (M,D2), . . . , (M,Dj), where (D1, . . . , Dj) is
a list of dictionary block identifiers that have been
preselected for the data type when using compression
method M. Otherwise, if no data type is available), steps
419, 421, 424, and 427, replace E with the list (M,D1'),
(M,D2'), . . . , (M,Dk'), where (D1', . . . , Dk') is a default
list of dictionary block identifiers for compression
method M. (Franaszek at 6:1-11.)

Accordingly, a person of ordinary skill in the art would understand Franaszek’s

lists to contain any number of compression methods (i.e., one or more compression

methods). This is similar to the disclosure in the ’506 patent that describes

encoding a data block using “a set of encoders D1, D2, D3 . . . Dm . . . [that] may

include any number ‘n’ of those lossless or lossy encoding techniques currently

well known with the art.” ’506 patent at 16:45-48.

48. Franaszek’s compression works by using a sample from a block that is to be

compressed. Each of a set of compressors is applied to the sample and the

compressor that results in the best compression of the sample is selected. For

example, a block of plain text might be compressed with an LZ compression

technique while a block of image data might be compressed with a run-length

NetApp; Rackspace Exhibit 1005 Page 23

24
dn-193685

compression technique. If, however, the best compression is not sufficient, then a

NOOP (i.e., no compressor) may be used for the block. If a “best” compressor is

identified, then that compressor is applied to the data block to produce a

compressed data block (i.e., a block with fewer bytes than the original data block)

that can be stored in memory. A compression method description (CMD) stored

with the compressed data block identifies the compressor used for a particular data

block.

49. Franaszek’s decompression sequence is the opposite sequence of the

compression sequence. The compressed data block, which includes the CMD and

compressed data, is retrieved. The CMD is used to determine the identity of the

particular compressor (or NOOP) that was used to produce compressed data in the

compressed data block. This information will enable the system to identify the

decompressor (or NOOP) that should be used to decompress the data. The

identified decompressor is then used to generate the uncompressed data.

50. The Franaszek system stores and retrieves the compressed data blocks on a

memory device. For example, Franaszek discloses memory devices such as

“semiconductor memories, magnetic storage (such as a disk or tape), optical

storage or any other suitable type of information storage media.” Franaszek at

4:10-12.

NetApp; Rackspace Exhibit 1005 Page 24

25
dn-193685

51. Franaszek discloses many of these same compression techniques that the

’506 patent describes as default compression encoders and compression encoders

associated with data types.

For simplicity, assume that all uncompressed data blocks
are a given fixed size, say 4096 bytes. Each such block
can be considered to consist of 8 512-byte sub-blocks, for
example. In some cases it may happen that using the first
such sub-block as a dictionary may yield better
compression than any of the fixed static dictionaries. This
method is shown as 602 in the compression method table
240. Alternatively, take the first 64 bytes of each sub-
block, and concatenating these into a 512-byte dictionary,
could be the best dictionary for some blocks having
certain phrase patterns. This method is indicated by 603
in the figure. The other three methods indicated in the
figure are arithmetic coding 600, run-length coding 601,
and LZ1 using one of the fixed set of static dictionaries
602. (Franaszek at 7:6-19.)

52. Franaszek outputs a descriptor that indicates the compression method that

was used to compress a particular block of data.

Each block of data includes a coding identifier which is
indicative of the method or mechanism used to compress
the block. The coding identifier is examined to select an
appropriate one of the data decompression mechanisms
to apply to the block. The block is then decompressed
using the selected one of the mechanisms. Franaszek at
3:42-45.

The compressor outputs compressed data blocks 230,
with an index (M) 232 identifying the selected
compression method, and for dictionary-based methods,
dictionary block identifier (D), encoded in a compression

NetApp; Rackspace Exhibit 1005 Page 25

26
dn-193685

method description (CMD) area 235 in the compressed
block. Franaszek at 4:55-59.

53. The “CMD” area is stored with each compressed data block in the second

memory of FIG. 1 and identifies the compression method that was used to

compress the compressed data block. For example, CMD area 235 in FIG. 2,

which is described at 4:55-59, is stored with each compressed data block in the

second memory of FIG. 1 and contains an identifier of the compression method

that was used to produce the compressed data block. The CMD area is used during

decompression to identify the correct decompression technique to use for the

compressed data block.

Compressed data blocks 230, with the compression
method identifier M and for dictionary-based methods
dictionary block identifier D encoded in the CMD area
235 are input to the de-compressor 270. The de-
compressor 270 de-compresses the block using the
specified method found in the compression method table
240 (using the compression method identifier as an
index), and for dictionary-based methods, specified
dictionary block found in the dictionary block memory
250, and outputs uncompressed data blocks 280.
Franaszek at 4:65-5:7.

4. U.S. Patent No. 5,467,087 (“Chu”) (Ex. 1013)

54. Chu describes a compression system that determines a data type of a data

stream and then chooses an appropriate compression algorithm based on the

identified data type.

NetApp; Rackspace Exhibit 1005 Page 26

27
dn-193685

A data compression process and system that identifies the
data type of an input data stream and then selects in
response to the identified data type at least one data
compression method from a set of data compression
methods that provides an optimal compression ratio for
that particular data type, thus maximizing the
compression ratio for that input data stream. Moreover,
the data compression process also provides means to alter
the rate of compression during data compression for
added flexibility and data compression efficiency. (Chu
at Abstract.)

55. Chu discloses using the contents of the data stream itself to determine the

type of data. For example, claims 3, 7, and 8, reproduced below, disclose

“analyzing data” (e.g., looking for data bytes representing values above a threshold

or having identical contents) to determine a data type.

3. An electronic data compression process for
compressing at least one set of input data, the at least one
set of input data being of a specific data type of a
plurality of data types, the electronic data compression
process comprises the steps of:

identifying the specific data type of the set of input data;

selecting at least one data compression method in
response to the identified data type;

compressing the set of input data with the selected at
least one data compression method; and

allocating an amount of memory to perform the step of
compressing, the amount of memory being an amount
substantially equal to the greater of an initial amount of
memory and an amount of memory necessary to
compress the set of input data. (Chu at 8:28-43 (emphasis
added).)

NetApp; Rackspace Exhibit 1005 Page 27

28
dn-193685

7. The electronic data compression process of claim 3
wherein the set of input data includes a series of bytes,
wherein the step of identifying the specific data type of
the set of input data includes the step of determining
whether each byte in said series of bytes represents a
value greater than a predetermined value.

8. The electronic data compression process of claim 3
wherein the set of input data includes a series of bytes,
wherein the step of identifying the specific data type of
the set of input data includes the step of determining
whether selected bytes in said series of bytes are
identical. (Chu at 8:56-66 (emphasis added).)

B. MODIFYING REFERENCES

1. Modifying Hsu to Include a Default Encoder

56. An implementation of Hsu with “a default data compression encoder” is

consistent with the teaching of other prior art references. For example, as I

described above, Sebastian and Franaszek each disclose compression systems that

select compression algorithms that are most appropriate for the data type being

compressed. When the data type is not identified or not recognized, Sebastian’s

system and Franaszek’s system each use a default compression algorithm.

Sebastian and Franaszek thus each provide teachings that a default compression

algorithm can be used when no data type is identified.

57. Implementing Hsu to use “a default data compression encoder,” as recited in

claim 105 of the ’506 patent, would have required nothing more than using known

technologies for their intended purposes to produce predictable results. Such an

NetApp; Rackspace Exhibit 1005 Page 28

29
dn-193685

implementation also would have been well within the ability of a person of

ordinary skill in the art. Hsu states that the described compression system was

implemented using the C programming language. A person of ordinary skill in the

art would have been well versed in the C programming language.

58. A person of ordinary skill in the art would have found it obvious to

implement Hsu to use a default data compression encoder as recited in claim 105

of the ’506 patent. For example, Hsu acknowledges that there are four data

classification/redundancy metric combinations that have no entry in the database

represented by Table I (the locations of double “*” in Table I). Hsu states that

occurrence of these combinations is “very unusual.” Hsu at 1106. When such a

combination occurs, the next highest metric is used instead unless the other metrics

are below the threshold. Hsu discloses one solution when this occurs, which is to

not perform any compression at all in order to save the overhead of compressing a

data block when there is poor potential for compression. Hsu at 1106.

59. A person of ordinary skill in the art would have recognized another potential

solution to the problem of a combination of a data classification and largest

redundancy metric without an associated encoder that would have been obvious to

try. Specifically, it would have been obvious to try implementing Hsu’s system to

just use a default data compression encoder instead of tagging the data block for no

compression at all. Such a modification would have been well within the skill of a

NetApp; Rackspace Exhibit 1005 Page 29

30
dn-193685

person of ordinary skill in the art for similar reasons as I explained above. Such a

modification would have simply used known technologies (i.e., Hsu’s compression

system and Sebastian’s or Franaszek’s default data compression encoder) to

produce predictable results. Additionally, such a modification could be done with

simple C programming features, such as “if . . . then” statements with minimal

changes to the compression lookup function to the compression database.

60. In fact, not only would it have been obvious to try implementing a default

data compression encoder in Hsu’s system, as taught in Sebastian and Franaszek,

but a person of ordinary skill in the art would have been motivated to make such a

modification for a variety of reasons. Hsu discloses that one of its goals is to

achieve a compression system with “better space savings.” Hsu at Abstract. A

person of ordinary skill in the art implementing Hsu with this goal in mind would

have recognized the potential for improved space savings by not tagging data

classification/redundancy metric combinations for no compression just because the

expectation is that compressing would result in no space savings. Instead, a default

data compression encoder could be used to see if any space savings could be

achieved. This modification would have been simple to implement. It would only

require tagging a data block with the default data compression encoder when such

data classification/redundancy metric combinations were identified. The rest of

Hsu’s system could remain unmodified.

NetApp; Rackspace Exhibit 1005 Page 30

31
dn-193685

61. A person of ordinary skill in the art would have found such a modification to

be useful in several situations. For example, while Hsu explains that data blocks

with certain combinations of data classifications and largest redundancy metric are

tagged for no compression because they are “interpreted as a decision that the

(poor) potential for compression is outweighed by the overhead of executing the

compression algorithm” (Hsu at 1106), in situations where computing resources

are not limited and/or compression ratio is more important, it would have been

obvious to try compressing these data blocks anyway just in case further space

savings could still be achieved. In other words, in Hsu, there is a tradeoff between

potential space savings and computing resources and Hsu’s system is configured to

save computing resources in this situation. A person of ordinary skill in the art that

weighs these factors differently would have found it obvious to choose space

savings over computing resources.

62. Space savings could be achieved even with the very unusual combinations of

data classification and largest redundancy metric in several circumstances. For

example, Hsu acknowledges that modifications to the system would be needed to

accommodate the continuing development of new data classifications in the future,

such as “high-resolution animation and three-dimensional images.” Hsu at 1114.

Prior to the filing of the ’506 patent, it was well known that the number of data

formats and data types was increasing and it was common to encounter unknown

NetApp; Rackspace Exhibit 1005 Page 31

32
dn-193685

data types in common applications such as data storage and data communications.

See, e.g., International Patent Application Publication Nos. WO 2001/063772 (Ex.

1016) at 5 and WO 2001/050325 (Ex. 1017) at 10-11 (describing how to handle

unknown data types when compressing data).

63. If Hsu’s system were to encounter the new data classifications before “new-

file” was expanded to properly handle them, the data blocks with the new data

classifications could be misclassified as one of Hsu’s “very unusual” combinations

and tagged for no compression even though compressing the data block might

result in space savings. Hsu at 1106. Using a default encoder would address this

issue until “new-file” could be properly updated. As another example, Hsu’s data

classification identification module and redundancy metric modules are based on

sampling a data block. That means if a very unusual data

classification/redundancy metric combination is identified, it could just mean that

the sampling was unlucky and produced an incorrect combination. Again, using a

default encoder would address this issue while maximizing space savings.

2. Modifying Franaszek to Analyze Data without a Descriptor

64. Franaszek’s system relies on a “data type” field, the contents of which can

be used by the system to identify the data type of a data block. Franaszek,

however, does not specify how the “data type” field came to contain its contents.

For example, it is possible that the data blocks that were received as input to

NetApp; Rackspace Exhibit 1005 Page 32

33
dn-193685

Franaszek’s compression system contained the “data type” field content. On the

other hand, it is also possible that the data blocks did not have “data type” field

content. In this case, the “data type” content would need to have been determined

using a separate process before feeding the data blocks to the data compressor (see

Figure 2). Accordingly, a person of ordinary skill in the art would have looked to

see how others had addressed the same problem. Hsu and Chu both teach

determining a data type for data can be accomplished by analyzing data directly

without relying on a data descriptor to indicate the data type. Based on the

teaching in Hsu and Chu with respect to systems that are similar to Franaszek’s, a

person of ordinary skill in the art would have found it obvious to adapt Franaszek’s

system to work with data streams that do not have “data type” field contents and

instead to analyze the data bytes of the data block to determine the data type

without relying on a descriptor that indicates the data type.

65. Analyzing data bytes themselves, as taught in Hsu and Chu, to determine the

contents for Franaszek’s “data type” field would have been well within the abilities

of a person of ordinary skill in the art. Such an implementation of Franaszek’s

system would have only required using two known technologies (e.g., Franaszek’s

compression system with a “data type” field and Hsu’s or Chu’s analysis of the

data itself to determine the data type) to produce predictable results. Each of the

technologies would be used exactly for its respective intended purpose.

NetApp; Rackspace Exhibit 1005 Page 33

34
dn-193685

I declare that all statements made herein of my own knowledge are true and that all

statements made on information and belief are believed to be true, and that these

statements were made with knowledge that willful false statements and the like so

made are punishable by fine or imprisonment, or both, under section 1001 of Title

18 of the United States Code.

Dated: June 22, 2017 _______________________

Daniel Hirschberg

NetApp; Rackspace Exhibit 1005 Page 34

35
dn-193685

Exhibit List for Declaration of Daniel Hirschberg

Exhibit Description Exhibit

CV of Daniel Hirschberg A

PKZIP APPNOTE Version 1.0 B

Unix man page for “file” command, available from
https://web.archive.org/web/20010810082609/http://unixhelp.ed.ac.uk
:80/CGI/man-cgi?file

C

NetApp; Rackspace Exhibit 1005 Page 35

NetApp; Rackspace Exhibit 1005 Page 36

Daniel S. Hirschberg

Department of Computer Science (949) 824-6480
University of California, Irvine dan@ics.uci.edu
Irvine, CA 92697-3435 http://www.ics.uci.edu/∼dan

EDUCATION

1975 Ph.D. (Computer Science), Princeton University
1973 MSE, MA, Princeton University
1971 BE(EE), City College of New York

ACADEMIC APPOINTMENTS

2003- Professor of Computer Science and EECS
1994-2003 Professor of Information and Computer Science and ECE
1987-94 Professor of Information and Computer Science
1992-93, 96-98 Associate Chair of Undergraduate Studies, ICS
1984-90 Associate Chair of Graduate Studies, ICS
1981-87 Associate Professor of Information and Computer Science
1975-81 Assistant Professor of Electrical Engineering (Rice University)

CONSULTING ACTIVITIES

1998-2017 several law firms
Consulting expert for intellectual property cases
Provide expert testimony in judicial proceedings

1984-94 Manufacturing and Consulting Services, Inc. (Scottsdale, AZ)
Design and analysis of database structures for CAD/CAM

1989 A-Chip Co., Inc. (Santa Ana, CA)
Design of data compression/decompression techniques

1984-89 Pick Systems, Inc. (Irvine, CA)
Design of operating system data structures

1986 Computer Cognition, Inc. (San Diego CA)
Design of data structures for AI applications

1978-81 University of Texas Health Science Center (Houston, TX)
Database development for genetics research

1976 Argonne National Laboratories (Argonne, IL)
System simulation, Numerical analysis

PROFESSIONAL SERVICE

Referee of grant proposals for Army Research Office, National Science Foundation,
Israel Science Foundation, Research Grants Council (Hong Kong)

Reviewer of textbooks for several publishers
Referee of technical papers for numerous journals
Associate Editor, ACM Trans. on Mathematical Software (1988–90)
Associate Editor, Discrete Mathematics, Algorithms and Applications (2009–present)
Member of the Program Committee

IEEE Data Compression Conference (1991,1992,1993,1994)
Combinatorial Pattern Matching (1992,1993,1994,1996,1997,2009) [co-chair 1996]
String Processing and Information Retrieval (1998)
Combinatorial Optimization and Applications (2010)

1
Exhibit A Page 1

PUBLICATIONS

A. Books and Book Chapters

B1 D.S. Hirschberg, “Recent results on the complexity of common subsequence problems,” in Time
Warps, String Edits, and Macromolecules, D. Sankoff and J.B. Kruskal (Eds.), Addison-Wesley
(1983) 323–328.

B2 D.S. Hirschberg and D.A. Lelewer, “Context modeling for text compression,” in Image and Text
Compression, J. A. Storer, Ed., Kluwer Academic Publishers, Boston, Mass. (1992) 113–145.

B3 D.S. Hirschberg, M.J. Pazzani and K. Ali, “Average case analysis of k-CNF and k-DNF learning
algorithms,” in Computational Learning Theory and Natural Learning Systems: Constraints
and Prospects, S. Hanson, M. Kearns, T. Petsche and R. Rivest (Eds.), MIT Press, Cambridge,
Mass. (1994) 15–28.

B4 D. Hirschberg and G. Myers (Eds.), Combinatorial Pattern Matching, Proceedings 1996, Lecture
Notes in Computer Science, vol. 1075, Springer-Verlag, Berlin (1996) 392 pp.

B5 D.S. Hirschberg, “Serial computations of Levenshtein distances,” in Pattern Matching Algorithms,
Apostolico, A. and Galil, Z. (Eds.), Oxford University Press (1997) 123–141.

B. Articles in Refereed Journals

J1 D.S. Hirschberg, “A class of dynamic memory allocation algorithms,” Communications ACM
16:10 (1973) 615–618.

J2 D.S. Hirschberg, “A linear space algorithm for computing maximal common subsequences,”
Communications ACM 18:6 (1975) 341–343.

J3 A.V. Aho, D.S. Hirschberg and J.D. Ullman, “Bounds on the complexity of the longest common
subsequence problem,” Journal ACM 23:1 (1976) 1–12.

J4 D.S. Hirschberg and C.K. Wong, “A polynomial-time algorithm for the knapsack problem with
two variables,” Journal ACM 23:1 (1976) 147–154.

J5 D.S. Hirschberg, “An insertion technique for one-sided height-balanced trees,” Communications
ACM 19:8 (1976) 471–473.

J6 A.K. Chandra, D.S. Hirschberg and C.K. Wong, “Approximate algorithms for some generalized
knapsack problems,” Theoretical Computer Science 3:3 (1976) 293–304.

J7 D.S. Hirschberg, “Algorithms for the longest common subsequence problem,” Journal ACM
24:4 (1977) 664–675.

J8 D.S. Hirschberg, “An information theoretic lower bound for the longest common subsequence
problem,” Information Processing Letters 7:1 (1978) 40–41.

J9 D.S. Hirschberg, “Fast parallel sorting algorithms,” Communications ACM 21:8 (1978) 657–661.

J10 A.K. Chandra, D.S. Hirschberg and C.K. Wong, “Bin packing with geometric constraints in
computer network design,” Operations Research 26:5 (1978) 760–772.

J11 D.S. Hirschberg and C.K. Wong, “Upper and lower bounds for graph-diameter problems,”
Journal of Comb. Theory (B) 26:1 (1979) 66–74.

J12 D.S. Hirschberg, A.K. Chandra and D.V. Sarwate, “Computing connected components on
parallel computers,” Communications ACM 22:8 (1979) 461–464.

2
Exhibit A Page 2

J13 D.S. Hirschberg, “On the complexity of searching a set of vectors,” SIAM Journal on Computing
9:1 (1980) 126–129.

J14 D.S. Hirschberg and J.B. Sinclair, “Decentralized extrema-finding in circular configurations of
processors,” Communications ACM 23:11 (1980) 627–628.

J15 M. Kumar and D.S. Hirschberg, “An efficient implementation of Batcher’s odd-even merge
algorithm and its application in parallel sorting schemes,” IEEE Trans. on Computers C-32:3
(1983) 254–264.

J16 L.L. Larmore and D.S. Hirschberg, “Efficient optimal pagination of scrolls,” Communications
ACM 28:8 (1985) 854–856.

J17 J. Hester and D.S. Hirschberg, “Self-organizing linear search,” Computing Surveys 17:3 (1985)
295–311.

J18 J.H. Hester, D.S. Hirschberg, S.-H.S. Huang and C.K. Wong, “Faster construction of optimal
binary split trees,” Journal of Algorithms 7:3 (1986) 412–424.

J19 D.S. Hirschberg and L.L. Larmore, “Average case analysis of marking algorithms,” SIAM
Journal on Computing 15:4 (1986) 1069–1074.

J20 D.S. Hirschberg and L.L. Larmore, “The Set LCS problem,” Algorithmica 2 (1987) 91–95.

J21 D.S. Hirschberg and D.J. Volper, “Improved update/query algorithms for the interval valuation
problem,” Information Processing Letters 24 (1987) 307–310.

J22 D.S. Hirschberg and L.L. Larmore, “New applications of failure functions,” Journal ACM 34:3
(1987) 616–625.

J23 D.S. Hirschberg and L.L. Larmore, “The least weight subsequence problem,” SIAM J. on
Computing 16,4 (1987) 628–638.

J24 J. Hester and D.S. Hirschberg, “Self-organizing search lists using probabilistic backpointers,”
Communications ACM 30:12 (1987) 1074–1079.

J25 D.A. Lelewer and D.S. Hirschberg, “Data compression,” Computing Surveys 19:3 (1987) 261–297.
Reprinted in Japanese BIT Special issue in Computer Science (1989) 165–195.

J26 J.H. Hester, D.S. Hirschberg, and L.L. Larmore, “Construction of optimal binary split trees in
the presence of bounded access probabilities,” Journal of Algorithms 9:2 (1988) 245–253.

J27 D.S. Hirschberg and L.L. Larmore, “The Set-Set LCS problem,” Algorithmica 4:4 (1989) 503–510.

J28 C. Ng and D.S. Hirschberg, “Lower bounds for the stable marriage problem and its variants,”
SIAM J. on Computing 19:1 (1990) 71–77.

J29 D.S. Hirschberg and D.A. Lelewer, “Efficient decoding of prefix codes,” Communications ACM
33:4 (1990) 449–459.

J30 L.L. Larmore and D.S. Hirschberg, “A fast algorithm for optimal length-limited codes,” Journal
ACM 37:3 (1990) 464–473.

J31 C. Ng and D.S. Hirschberg, “Three-dimensional stable matching problems,” SIAM J. Discr.
Math. 4:2 (1991) 245–252.

J32 D.S. Hirschberg and L.L. Larmore, “The traveler’s problem,” Journal of Algorithms 13 (1992)
148–160.

J33 D.S. Hirschberg and S.S. Seiden, “A bounded-space tree traversal algorithm,” Information
Processing Letters 47 (1993) 215–219.

3
Exhibit A Page 3

J34 S.S. Seiden and D.S. Hirschberg, “Finding succinct minimal perfect hashing functions,” Information
Processing Letters 51 (1994) 283–288.

J35 L.M. Stauffer and D.S. Hirschberg, “Systolic self-organizing lists under transpose,” IEEE Trans.
on Parallel and Distributed Systems 6:1 (1995) 102–105.

J36 D.S. Hirschberg and L.M. Stauffer, “Dictionary compression on the PRAM,” Parallel Processing
Letters 7:3 (1997) 297–308.

J37 D. Eppstein and D.S. Hirschberg, “Choosing subsets with maximum weighted average,” Journal
of Algorithms 24 (1997) 177–193.

J38 M. Dillencourt, D. Eppstein, and D. S. Hirschberg. “Geometric thickness of complete graphs,”
J. Graph Algorithms and Applications 4:3 (2000) 5–17. Reprinted in Graph Algorithms and
Applications 2, Giuseppe Liotta, Robert Tamassia, and Ioannis G Tollis, ed., (2004).

J39 D.S. Hirschberg and M. Regnier, “Tight bounds on the number of string subsequences,” Journal
of Discrete Algorithms 1:1 (2000) 123–132.

J40 M. Mamidipaka, D. Hirschberg, and N. Dutt, “Adaptive low power address encoding techniques
using self-organizing lists,” IEEE Trans. on Very Large Scale Integration Systems 11:5 (2003)
827–834.

J41 D. Eppstein, M.T. Goodrich, and D.S. Hirschberg, “Improved combinatorial group testing
algorithms for real-world problem sizes,” SIAM J. on Computing 36:5 (2007) 1360-1375.

J42 G.I. Bell, D.S. Hirschberg, and P. Guerrero-Garcia, “The minimum size required of a solitaire
army,” Integers: Electronic Journal of Combinatorial Number Theory 7 (2007), #G07
http://www.integers-ejcnt.org/vol7.html (22 pages).

J43 P. Baldi, R. Benz, D.S. Hirschberg, and S. Swamidass, “Lossless compression of chemical
fingerprints using integer entropy codes improves storage and retrieval,” Journal of Chemical
Information and Modeling 47:6 (2007) 2098-2109.

J44 M.T. Goodrich and D.S. Hirschberg, “Improved adaptive group testing algorithms with applications
to multiple access channels and dead sensor diagnosis,” Journal of Combinatorial Optimization
15:1 (2008) 95-121.

J45 P. Baldi, D.S. Hirschberg, and R. Nasr, “Speeding up chemical database searches using a
proximity filter based on the logical exclusive-or,” Journal of Chemical Information and Modeling
48:7 (2008) 1367-1378.

J46 P. Baldi and D.S. Hirschberg, “An intersection inequality sharper than the Tanimoto triangle
inequality for efficiently searching large databases,” Journal of Chemical Information and Modeling
49:8 (2009) 1866-1870.

J47 R. Nasr, D.S. Hirschberg, and P. Baldi, “Hashing algorithms and data structures for rapid
searches of fingerprint vectors,” Journal of Chemical Information and Modeling 50:8 (2010)
1358-1368.

J48 D. Eppstein and D. Hirschberg, “From discrepancy to majority,” Algorithmica (2017) to appear.

C. Papers in Conference Proceedings and Workshops

C1 A.V. Aho, D.S. Hirschberg and J.D. Ullman, “Bounds on the complexity of the longest common
subsequence problem,” Proc. 15th IEEE Symp. on Switching and Automata Theory, New
Orleans, LA (1974) 104–109.

4
Exhibit A Page 4

C2 D.S. Hirschberg, “A slightly better bound for the vertex connectivity problem,” Proc. Conf.
of Info. Sci. and Systems, Baltimore MD, Johns Hopkins Univ. (1975) 257–258.

C3 D.S. Hirschberg, “Parallel algorithms for the transitive closure and the connected component
problems,” Proc. 8th ACM Symp. on Theory of Computing, Hershey PA (1976) 55–57.

C4 D.S. Hirschberg, “Complexity of common subsequence problems,” Fundamentals of Computation
Theory, Poznan Poland, Lecture Notes in Computer Science, vol. 56, Springer-Verlag, Berlin
(1977) 393–398.

C5 D.S. Hirschberg, “A lower worst-case complexity for searching a dictionary,” Proc. 16th Allerton
Conf. on Communications, Control, and Computing, Monticello IL, Univ. of Ill. (1978) 50–53.

C6 D.S. Hirschberg, “Election processes in distributed systems”, Proc. 18th Allerton Conf. on
Communications, Control, and Computing, Monticello IL, Univ. of Ill. (1980) 823.

C7 M. Kumar and D.S. Hirschberg, “An efficient implementation of Batcher’s odd-even merge
algorithm and its application in parallel sorting schemes,” Proc. Conf. of Info. Sci. and
Systems, Baltimore MD, Johns Hopkins Univ. (1981).

C8 D.S. Hirschberg, “Parallel graph algorithms without memory conflicts,” Proc. 20th Allerton
Conf. on Communications, Control, and Computing, Monticello IL, Univ. of Ill. (1982)
257–263.

C9 D.S. Hirschberg and D.J. Volper, “A parallel solution for the minimum spanning tree problem,”
Proc. Conf. of Info. Sci. and Systems, Baltimore MD, Johns Hopkins Univ. (1983) 680–684.

C10 D.S. Hirschberg and L.L. Larmore, “Average case analysis of marking algorithms,” Proc. 22nd
Allerton Conf. on Communications, Control, and Computing, Monticello IL, Univ. of Ill.
(1984) 508–509.

C11 L.L. Larmore and D.S. Hirschberg, “Breaking a paragraph into lines in linear time,” Proc.
22nd Allerton Conf. on Communications, Control, and Computing, Monticello IL, Univ. of Ill.
(1984) 478–487.

C12 D.S. Hirschberg and L.L. Larmore, “The Least Weight Subsequence Problem,” Proc. 26th
IEEE Symp. on Foundations of Computer Science, Portland Oregon (1985) 137–143.

C13 R.R. Razouk and D.S. Hirschberg, “Tools for efficient analysis of concurrent software systems,”
Proc. of SOFTFAIR II, A Second Conference on Software Development Tools, Techniques, and
Alternatives, San Francisco CA (1985).

C14 J.H. Hester and D.S. Hirschberg, “Generation of optimal binary split trees,” Proc. 24th Allerton
Conf. on Communications, Control, and Computing, Monticello IL, Univ. of Ill. (1986)
308–313.

C15 L.L. Larmore and D.S. Hirschberg, “Length-limited coding,” Proc. First ACM-SIAM Symposium
on Discrete Algorithms, San Francisco (1990) 310–318.

C16 D.A. Lelewer and D.S. Hirschberg, “Streamlining context models for data compression,” Proc.
IEEE Data Compression Conference, Snowbird UT (1991) 313–322.

C17 D.S. Hirschberg, M.J. Pazzani and K. Ali, “Average case analysis of k-CNF and k-DNF
learning algorithms,” Second Annual Workshop on Computational Learning Theory and Natural
Learning Systems: Constraints and Prospects, Berkeley CA (1991).

C18 S. Bhatia, D.S. Hirschberg and I.D. Scherson, “Shortest paths in orthogonal graphs,” Proc.
29th Allerton Conf. on Communications, Control, and Computing, Monticello IL, Univ. of Ill.
(1991) 488–497.

5
Exhibit A Page 5

C19 L.M. Stauffer and D.S. Hirschberg, “Transpose coding on the systolic array,” Proc. IEEE Data
Compression Conference, Snowbird UT (1992) 162–171.

C20 D.S. Hirschberg and M.J. Pazzani, “Average case analysis of learning k-CNF concepts,” Proc.
Ninth International Machine Learning Conference, Aberdeen Scotland, Morgan Kaufmann, San
Mateo (1992) 206–211.

C21 D.S. Hirschberg and L.M. Stauffer, “Parsing algorithms for dictionary compression on the
PRAM,” Proc. IEEE Data Compression Conference, Snowbird UT (1994) 136–145.

C22 L.M. Stauffer and D.S. Hirschberg, “PRAM algorithms for static dictionary compression,” Proc.
IEEE 8th International Parallel Processing Symposium, Cancun Mexico (1994) 344–348.

C23 D. Eppstein and D.S. Hirschberg, “Choosing subsets with maximum weighted average,” Proc.
5th MSI Workshop on Computational Geometry, Stonybrook NY (1995) 7–8.

C24 J.K. Martin and D.S. Hirschberg, “On the complexity of learning decision trees,” Proc. 4th Int.
Symp. on Artif. Intell. and Math., Fort Lauderdale FL (1996) 112–115. [Expanded version
in “The time complexity of decision tree induction,” Tech. Rpt. 95–27, ICS Dept., UC Irvine
(August, 1995).]

C25 M.B. Dillencourt, D.E. Eppstein and D.S. Hirschberg, “Geometric thickness of complete graphs,”
Graph Drawing: 6th Int’l Symp., Montreal Canada, Lecture Notes in Computer Science, vol.
1547, Springer-Verlag, Berlin (1998) 102–110.

C26 D.S. Hirschberg, “Bounds on the number of string subsequences,” Proc. Symp. on Combinatorial
Pattern Matching, Warwick UK, Lecture Notes in Computer Science, Springer-Verlag, Berlin
(1999) 115–122.

C27 M. Mamidipaka, D. Hirschberg, and N. Dutt, “Low power address encoding using self-organizing
lists,” Proc. ACM/IEEE Int’l Symp. on Low Power Electronics and Design, Huntington Beach
CA (2001) 188–193.

C28 M. Mamidipaka, D. Hirschberg, and N. Dutt, “Efficient power reduction techniques for time
multiplexed address buses,” Proc. 15th ACM Int’l Symp. on System Synthesis, Kyoto (2002)
207–212.

C29 D. Eppstein, M.T. Goodrich, and D.S. Hirschberg, “Improved combinatorial group testing
algorithms for real-world problem sizes,” 9th Workshop Algorithms and Data Structures (WADS),
Waterloo, 2005. Lecture Notes in Comp. Sci. 3608 (2005) 86–98.

C30 M.T. Goodrich, and D.S. Hirschberg, “Efficient parallel algorithms for dead sensor diagnosis
and multiple access channels,” Proc. 18th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), Cambridge MA (2006) 118–127.

C31 D.S. Hirschberg and P. Baldi, “Effective compression of monotone and quasi-monotone sequences
of integers,” Proc. IEEE Data Compression Conference, Snowbird UT (2008) 520.

C32 D.S. Hirschberg, “Constructing problems of geometric combinatorics,” Gathering for Gardner
Conference (G4G9), Atlanta GA (2010), 8 pp.

C33 M.T. Goodrich, D.S. Hirschberg, M. Mitzenmacher, and J. Thaler, “Cache-oblivious dictionaries
and multimaps with negligible failure probability,” Proc. Mediterranean Conference on Algorithms,
Kibbutz Ein-Gedi Israel (2012), Lecture Notes in Computer Science, vol. 7659, Springer-Verlag,
Berlin (2012) 203–218.

C34 D. Eppstein, M. Goodrich, and D. Hirschberg, “Combinatorial pair testing: distinguishing
workers from slackers,” Algorithms and Data Structures Symposium (WADS) 2013, Lecture
Notes in Computer Science, vol. 8037, Springer-Verlag, Berlin (2013) 316–327.

6
Exhibit A Page 6

C35 D. Eppstein and D. Hirschberg, “From discrepancy to majority,” Proc. 12th Latin American
Theoretical Informatics Symposium (LATIN’16), Ensenada, Mexico, (2016) 390–402.

7
Exhibit A Page 7

APPNOTE-1.0.txt
Copyright (c) 1990 PKWARE, Inc. All Rights Reserved
Disclaimer

Although PKWARE will attempt to supply current and accurate
information relating to its file formats, algorithms, and the
subject programs, the possibility of error can not be eliminated.
PKWARE therefore expressly disclaims any warranty that the
information contained in the associated materials relating to the
subject programs and/or the format of the files created or
accessed by the subject programs and/or the algorithms used by
the subject programs, or any other matter, is current, correct or
accurate as delivered. Any risk of damage due to any possible
inaccurate information is assumed by the user of the information.
Furthermore, the information relating to the subject programs
and/or the file formats created or accessed by the subject
programs and/or the algorithms used by the subject programs is
subject to change without notice.

General Format of a ZIP file

 Files stored in arbitrary order. Large zipfiles can span multiple
 diskette media.

 Overall zipfile format:

 [local file header+file data] . . .
 [central directory] end of central directory record

 A. Local file header:

 local file header signature 4 bytes (0x04034b50)
 version needed to extract 2 bytes
 general purpose bit flag 2 bytes
 compression method 2 bytes
 last mod file time 2 bytes
 last mod file date 2 bytes
 crc-32 4 bytes
 compressed size 4 bytes
 uncompressed size 4 bytes
 filename length 2 bytes
 extra field length 2 bytes

 filename (variable size)
 extra field (variable size)

 B. Central directory structure:

 [file header] . . . end of central dir record

 File header:

 central file header signature 4 bytes (0x02014b50)
 version made by 2 bytes
 version needed to extract 2 bytes
 general purpose bit flag 2 bytes
 compression method 2 bytes
 last mod file time 2 bytes
 last mod file date 2 bytes
 crc-32 4 bytes
 compressed size 4 bytes
 uncompressed size 4 bytes
 filename length 2 bytes
 extra field length 2 bytes

Page 1

Exhibit B Page 1

APPNOTE-1.0.txt
 file comment length 2 bytes
 disk number start 2 bytes
 internal file attributes 2 bytes
 external file attributes 4 bytes
 relative offset of local header 4 bytes

 filename (variable size)
 extra field (variable size)
 file comment (variable size)

 End of central dir record:

 end of central dir signature 4 bytes (0x06054b50)
 number of this disk 2 bytes
 number of the disk with the
 start of the central directory 2 bytes
 total number of entries in
 the central dir on this disk 2 bytes
 total number of entries in
 the central dir 2 bytes
 size of the central directory 4 bytes
 offset of start of central
 directory with respect to
 the starting disk number 4 bytes
 zipfile comment length 2 bytes
 zipfile comment (variable size)

 C. Explanation of fields:

 version made by

 The upper byte indicates the host system (OS) for the
 file. Software can use this information to determine
 the line record format for text files etc. The current
 mappings are:

 0 - MS-DOS and OS/2 (F.A.T. file systems)
 1 - Amiga 2 - VMS
 3 - *nix 4 - VM/CMS
 5 - Atari ST 6 - OS/2 H.P.F.S.
 7 - Macintosh 8 - Z-System
 9 - CP/M 10 thru 255 - unused

 The lower byte indicates the version number of the
 software used to encode the file. The value/10
 indicates the major version number, and the value
 mod 10 is the minor version number.

 version needed to extract

 The minimum software version needed to extract the
 file, mapped as above.

 general purpose bit flag:

 bit 0: If set, indicates that the file is encrypted.
 bit 1: If the compression method used was type 6,
 Imploding, then this bit, if set, indicates
 an 8K sliding dictionary was used. If clear,
 then a 4K sliding dictionary was used.
 bit 2: If the compression method used was type 6,
 Imploding, then this bit, if set, indicates
 an 3 Shannon-Fano trees were used to encode the
 sliding dictionary output. If clear, then 2
 Shannon-Fano trees were used.

Page 2

Exhibit B Page 2

APPNOTE-1.0.txt
 Note: Bits 1 and 2 are undefined if the compression
 method is other than type 6 (Imploding).

 The upper three bits are reserved and used internally
 by the software when processing the zipfile. The
 remaining bits are unused in version 1.0.

 compression method:

 (see accompanying documentation for algorithm
 descriptions)

 0 - The file is stored (no compression)
 1 - The file is Shrunk
 2 - The file is Reduced with compression factor 1
 3 - The file is Reduced with compression factor 2
 4 - The file is Reduced with compression factor 3
 5 - The file is Reduced with compression factor 4
 6 - The file is Imploded

 date and time fields:

 The date and time are encoded in standard MS-DOS
 format.

 CRC-32:

 The CRC-32 algorithm was generously contributed by
 David Schwaderer and can be found in his excellent
 book "C Programmers Guide to NetBIOS" published by
 Howard W. Sams & Co. Inc. The 'magic number' for
 the CRC is 0xdebb20e3. The proper CRC pre and post
 conditioning is used, meaning that the CRC register
 is pre-conditioned with all ones (a starting value
 of 0xffffffff) and the value is post-conditioned by
 taking the one's complement of the CRC residual.

 compressed size:
 uncompressed size:

 The size of the file compressed and uncompressed,
 respectively.

 filename length:
 extra field length:
 file comment length:

 The length of the filename, extra field, and comment
 fields respectively. The combined length of any
 directory record and these three fields should not
 generally exceed 65,535 bytes.

 disk number start:

 The number of the disk on which this file begins.

 internal file attributes:

 The lowest bit of this field indicates, if set, that
 the file is apparently an ASCII or text file. If not
 set, that the file apparently contains binary data.
 The remaining bits are unused in version 1.0.

 external file attributes:

 The mapping of the external attributes is
 host-system dependent (see 'version made by'). For
 MS-DOS, the low order byte is the MS-DOS directory

Page 3

Exhibit B Page 3

APPNOTE-1.0.txt
 attribute byte.

 relative offset of local header:

 This is the offset from the start of the first disk on
 which this file appears, to where the local header should
 be found.

 filename:

 The name of the file, with optional relative path.
 The path stored should not contain a drive or
 device letter, or a leading slash. All slashes
 should be forward slashes '/' as opposed to
 backwards slashes '\' for compatibility with Amiga
 and Unix file systems etc.

 extra field:

 This is for future expansion. If additional information
 needs to be stored in the future, it should be stored
 here. Earlier versions of the software can then safely
 skip this file, and find the next file or header. This
 field will be 0 length in version 1.0.

 In order to allow different programs and different types
 of information to be stored in the 'extra' field in .ZIP
 files, the following structure should be used for all
 programs storing data in this field:

 header1+data1 + header2+data2 . . .

 Each header should consist of:

 Header ID - 2 bytes
 Data Size - 2 bytes

 Note: all fields stored in Intel low-byte/high-byte order.

 The Header ID field indicates the type of data that is in
 the following data block.

 Header ID's of 0 thru 31 are reserved for use by PKWARE.
 The remaining ID's can be used by third party vendors for
 proprietary usage.

 The Data Size field indicates the size of the following
 data block. Programs can use this value to skip to the
 next header block, passing over any data blocks that are
 not of interest.

 Note: As stated above, the size of the entire .ZIP file
 header, including the filename, comment, and extra
 field should not exceed 64K in size.

 In case two different programs should appropriate the same
 Header ID value, it is strongly recommended that each
 program place a unique signature of at least two bytes in
 size (and preferably 4 bytes or bigger) at the start of
 each data area. Every program should verify that it's
 unique signature is present, in addition to the Header ID
 value being correct, before assuming that it is a block of
 known type.

 file comment:

 The comment for this file.

Page 4

Exhibit B Page 4

APPNOTE-1.0.txt
 number of this disk:

 The number of this disk, which contains central
 directory end record.

 number of the disk with the start of the central directory:

 The number of the disk on which the central
 directory starts.

 total number of entries in the central dir on this disk:

 The number of central directory entries on this disk.

 total number of entries in the central dir:

 The total number of files in the zipfile.

 size of the central directory:

 The size (in bytes) of the entire central directory.

 offset of start of central directory with respect to
 the starting disk number:

 Offset of the start of the central direcory on the
 disk on which the central directory starts.

 zipfile comment length:

 The length of the comment for this zipfile.

 zipfile comment:

 The comment for this zipfile.

 D. General notes:

 1) All fields unless otherwise noted are unsigned and stored
 in Intel low-byte:high-byte, low-word:high-word order.

 2) String fields are not null terminated, since the
 length is given explicitly.

 3) Local headers should not span disk boundries. Also, even
 though the central directory can span disk boundries, no
 single record in the central directory should be split
 across disks.

 4) The entries in the central directory may not necessarily
 be in the same order that files appear in the zipfile.

UnShrinking

Shrinking is a Dynamic Ziv-Lempel-Welch compression algorithm
with partial clearing. The initial code size is 9 bits, and
the maximum code size is 13 bits. Shrinking differs from
conventional Dynamic Ziv-lempel-Welch implementations in several
respects:

1) The code size is controlled by the compressor, and is not
 automatically increased when codes larger than the current
 code size are created (but not necessarily used). When
 the decompressor encounters the code sequence 256
 (decimal) followed by 1, it should increase the code size

Page 5

Exhibit B Page 5

APPNOTE-1.0.txt
 read from the input stream to the next bit size. No
 blocking of the codes is performed, so the next code at
 the increased size should be read from the input stream
 immediately after where the previous code at the smaller
 bit size was read. Again, the decompressor should not
 increase the code size used until the sequence 256,1 is
 encountered.

2) When the table becomes full, total clearing is not
 performed. Rather, when the compresser emits the code
 sequence 256,2 (decimal), the decompressor should clear
 all leaf nodes from the Ziv-Lempel tree, and continue to
 use the current code size. The nodes that are cleared
 from the Ziv-Lempel tree are then re-used, with the lowest
 code value re-used first, and the highest code value
 re-used last. The compressor can emit the sequence 256,2
 at any time.

Expanding

The Reducing algorithm is actually a combination of two
distinct algorithms. The first algorithm compresses repeated
byte sequences, and the second algorithm takes the compressed
stream from the first algorithm and applies a probabilistic
compression method.

The probabilistic compression stores an array of 'follower
sets' S(j), for j=0 to 255, corresponding to each possible
ASCII character. Each set contains between 0 and 32
characters, to be denoted as S(j)[0],...,S(j)[m], where m<32.
The sets are stored at the beginning of the data area for a
Reduced file, in reverse order, with S(255) first, and S(0)
last.

The sets are encoded as { N(j), S(j)[0],...,S(j)[N(j)-1] },
where N(j) is the size of set S(j). N(j) can be 0, in which
case the follower set for S(j) is empty. Each N(j) value is
encoded in 6 bits, followed by N(j) eight bit character values
corresponding to S(j)[0] to S(j)[N(j)-1] respectively. If
N(j) is 0, then no values for S(j) are stored, and the value
for N(j-1) immediately follows.

Immediately after the follower sets, is the compressed data
stream. The compressed data stream can be interpreted for the
probabilistic decompression as follows:

let Last-Character <- 0.
loop until done
 if the follower set S(Last-Character) is empty then
 read 8 bits from the input stream, and copy this
 value to the output stream.
 otherwise if the follower set S(Last-Character) is non-empty then
 read 1 bit from the input stream.
 if this bit is not zero then
 read 8 bits from the input stream, and copy this
 value to the output stream.
 otherwise if this bit is zero then
 read B(N(Last-Character)) bits from the input
 stream, and assign this value to I.
 Copy the value of S(Last-Character)[I] to the
 output stream.

 assign the last value placed on the output stream to
 Last-Character.

Page 6

Exhibit B Page 6

APPNOTE-1.0.txt
end loop

B(N(j)) is defined as the minimal number of bits required to
encode the value N(j)-1.

The decompressed stream from above can then be expanded to
re-create the original file as follows:

let State <- 0.

loop until done
 read 8 bits from the input stream into C.
 case State of
 0: if C is not equal to DLE (144 decimal) then
 copy C to the output stream.
 otherwise if C is equal to DLE then
 let State <- 1.

 1: if C is non-zero then
 let V <- C.
 let Len <- L(V)
 let State <- F(Len).
 otherwise if C is zero then
 copy the value 144 (decimal) to the output stream.
 let State <- 0

 2: let Len <- Len + C
 let State <- 3.

 3: move backwards D(V,C) bytes in the output stream
 (if this position is before the start of the output
 stream, then assume that all the data before the
 start of the output stream is filled with zeros).
 copy Len+3 bytes from this position to the output stream.
 let State <- 0.
 end case
end loop

The functions F,L, and D are dependent on the 'compression
factor', 1 through 4, and are defined as follows:

For compression factor 1:
 L(X) equals the lower 7 bits of X.
 F(X) equals 2 if X equals 127 otherwise F(X) equals 3.
 D(X,Y) equals the (upper 1 bit of X) * 256 + Y + 1.
For compression factor 2:
 L(X) equals the lower 6 bits of X.
 F(X) equals 2 if X equals 63 otherwise F(X) equals 3.
 D(X,Y) equals the (upper 2 bits of X) * 256 + Y + 1.
For compression factor 3:
 L(X) equals the lower 5 bits of X.
 F(X) equals 2 if X equals 31 otherwise F(X) equals 3.
 D(X,Y) equals the (upper 3 bits of X) * 256 + Y + 1.
For compression factor 4:
 L(X) equals the lower 4 bits of X.
 F(X) equals 2 if X equals 15 otherwise F(X) equals 3.
 D(X,Y) equals the (upper 4 bits of X) * 256 + Y + 1.

Imploding

The Imploding algorithm is actually a combination of two distinct
algorithms. The first algorithm compresses repeated byte

Page 7

Exhibit B Page 7

APPNOTE-1.0.txt
sequences using a sliding dictionary. The second algorithm is
used to compress the encoding of the sliding dictionary ouput,
using multiple Shannon-Fano trees.

The Imploding algorithm can use a 4K or 8K sliding dictionary
size. The dictionary size used can be determined by bit 1 in the
general purpose flag word, a 0 bit indicates a 4K dictionary
while a 1 bit indicates an 8K dictionary.

The Shannon-Fano trees are stored at the start of the compressed
file. The number of trees stored is defined by bit 2 in the
general purpose flag word, a 0 bit indicates two trees stored, a
1 bit indicates three trees are stored. If 3 trees are stored,
the first Shannon-Fano tree represents the encoding of the
Literal characters, the second tree represents the encoding of
the Length information, the third represents the encoding of the
Distance information. When 2 Shannon-Fano trees are stored, the
Length tree is stored first, followed by the Distance tree.

The Literal Shannon-Fano tree, if present is used to represent
the entire ASCII character set, and contains 256 values. This
tree is used to compress any data not compressed by the sliding
dictionary algorithm. When this tree is present, the Minimum
Match Length for the sliding dictionary is 3. If this tree is
not present, the Minimum Match Length is 2.

The Length Shannon-Fano tree is used to compress the Length part
of the (length,distance) pairs from the sliding dictionary
output. The Length tree contains 64 values, ranging from the
Minimum Match Length, to 63 plus the Minimum Match Length.

The Distance Shannon-Fano tree is used to compress the Distance
part of the (length,distance) pairs from the sliding dictionary
output. The Distance tree contains 64 values, ranging from 0 to
63, representing the upper 6 bits of the distance value. The
distance values themselves will be between 0 and the sliding
dictionary size, either 4K or 8K.

The Shannon-Fano trees themselves are stored in a compressed
format. The first byte of the tree data represents the number of
bytes of data representing the (compressed) Shannon-Fano tree
minus 1. The remaining bytes represent the Shannon-Fano tree
data encoded as:

 High 4 bits: Number of values at this bit length + 1. (1 - 16)
 Low 4 bits: Bit Length needed to represent value + 1. (1 - 16)

The Shannon-Fano codes can be constructed from the bit lengths
using the following algorithm:

1) Sort the Bit Lengths in ascending order, while retaining the
 order of the original lengths stored in the file.

2) Generate the Shannon-Fano trees:

 Code <- 0
 CodeIncrement <- 0
 LastBitLength <- 0
 i <- number of Shannon-Fano codes - 1 (either 255 or 63)

 loop while i >= 0
 Code = Code + CodeIncrement
 if BitLength(i) <> LastBitLength then
 LastBitLength=BitLength(i)
 CodeIncrement = 1 shifted left (16 - LastBitLength)
 ShannonCode(i) = Code
 i <- i - 1
 end loop

Page 8

Exhibit B Page 8

APPNOTE-1.0.txt

3) Reverse the order of all the bits in the above ShannonCode()
 vector, so that the most significant bit becomes the least
 significant bit. For example, the value 0x1234 (hex) would
 become 0x2C48 (hex).

4) Restore the order of Shannon-Fano codes as originally stored
 within the file.

Example:

 This example will show the encoding of a Shannon-Fano tree
 of size 8. Notice that the actual Shannon-Fano trees used
 for Imploding are either 64 or 256 entries in size.

Example: 0x02, 0x42, 0x01, 0x13

 The first byte indicates 3 values in this table. Decoding the
 bytes:
 0x42 = 5 codes of 3 bits long
 0x01 = 1 code of 2 bits long
 0x13 = 2 codes of 4 bits long

 This would generate the original bit length array of:
 (3, 3, 3, 3, 3, 2, 4, 4)

 There are 8 codes in this table for the values 0 thru 7. Using the
 algorithm to obtain the Shannon-Fano codes produces:

 Reversed Order Original
Val Sorted Constructed Code Value Restored Length
--- ------ ----------------- -------- -------- ------
0: 2 1100000000000000 11 101 3
1: 3 1010000000000000 101 001 3
2: 3 1000000000000000 001 110 3
3: 3 0110000000000000 110 010 3
4: 3 0100000000000000 010 100 3
5: 3 0010000000000000 100 11 2
6: 4 0001000000000000 1000 1000 4
7: 4 0000000000000000 0000 0000 4

The values in the Val, Order Restored and Original Length columns
now represent the Shannon-Fano encoding tree that can be used for
decoding the Shannon-Fano encoded data. How to parse the
variable length Shannon-Fano values from the data stream is beyond the
scope of this document. (See the references listed at the end of
this document for more information.) However, traditional decoding
schemes used for Huffman variable length decoding, such as the
Greenlaw algorithm, can be succesfully applied.

The compressed data stream begins immediately after the
compressed Shannon-Fano data. The compressed data stream can be
interpreted as follows:

loop until done
 read 1 bit from input stream.

 if this bit is non-zero then (encoded data is literal data)
 if Literal Shannon-Fano tree is present
 read and decode character using Literal Shannon-Fano tree.
 otherwise
 read 8 bits from input stream.
 copy character to the output stream.
 otherwise (encoded data is sliding dictionary match)
 if 8K dictionary size
 read 7 bits for offset Distance (lower 7 bits of offset).

Page 9

Exhibit B Page 9

APPNOTE-1.0.txt
 otherwise
 read 6 bits for offset Distance (lower 6 bits of offset).

 using the Distance Shannon-Fano tree, read and decode the
 upper 6 bits of the Distance value.

 using the Length Shannon-Fano tree, read and decode
 the Length value.

 Length <- Length + Minimum Match Length

 if Length = 63 + Minimum Match Length
 read 8 bits from the input stream,
 add this value to Length.

 move backwards Distance+1 bytes in the output stream, and
 copy Length characters from this position to the output
 stream. (if this position is before the start of the output
 stream, then assume that all the data before the start of
 the output stream is filled with zeros).
end loop

Decryption

The encryption used in PKZIP was generously supplied by Roger
Schlafly. PKWARE is grateful to Mr. Schlafly for his expert
help and advice in the field of data encryption.

PKZIP encrypts the compressed data stream. Encrypted files must
be decrypted before they can be extracted.

Each encrypted file has an extra 12 bytes stored at the start of
the data area defining the encryption header for that file. The
encryption header is originally set to random values, and then
itself encrypted, using 3, 32-bit keys. The key values are
initialized using the supplied encryption password. After each byte
is encrypted, the keys are then updated using psuedo-random number
generation techniques in combination with the same CRC-32 algorithm
used in PKZIP and described elsewhere in this document.

The following is the basic steps required to decrypt a file:

1) Initialize the three 32-bit keys with the password.
2) Read and decrypt the 12-byte encryption header, further
 initializing the encryption keys.
3) Read and decrypt the compressed data stream using the
 encryption keys.

Step 1 - Initializing the encryption keys

Key(0) <- 305419896
Key(1) <- 591751049
Key(2) <- 878082192

loop for i <- 0 to length(password)-1
 update_keys(password(i))
end loop

Where update_keys() is defined as:

update_keys(char):
 Key(0) <- crc32(key(0),char)
 Key(1) <- Key(1) + (Key(0) & 000000ffH)

Page 10

Exhibit B Page 10

5/1/2017 UNIX man pages : file ()

https://web-beta.archive.org/web/20010810082609/http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file 1/7

NOTE: click here if you get an empty page.

FILE(1) FILE(1)

NAME

 file - determine file type

SYNOPSIS

 file [-bcnsvzL] [-f namefile] [-m magicfiles] file
 ...

DESCRIPTION

 This manual page documents version 3.27 of the file com
 mand. File tests each argument in an attempt to classify
 it. There are three sets of tests, performed in this
 order: filesystem tests, magic number tests, and language
 tests. The first test that succeeds causes the file type
 to be printed.

 The type printed will usually contain one of the words
 text (the file contains only ASCII characters and is prob
 ably safe to read on an ASCII terminal), executable (the
 file contains the result of compiling a program in a form
 understandable to some UNIX kernel or another), or data
 meaning anything else (data is usually `binary' or non-
 printable). Exceptions are well-known file formats (core
 files, tar archives) that are known to contain binary
 data. When modifying the file /usr/share/magic or the
 program itself, preserve these keywords . People depend
 on knowing that all the readable files in a directory have
 the word ``text'' printed. Don't do as Berkeley did -
 change ``shell commands text'' to ``shell script''.

 The filesystem tests are based on examining the return
 from a stat(2) system call. The program checks to see if
 the file is empty, or if it's some sort of special file.
 Any known file types appropriate to the system you are
 running on (sockets, symbolic links, or named pipes
 (FIFOs) on those systems that implement them) are intuited
 if they are defined in the system header file sys/stat.h.

 The magic number tests are used to check for files with
 data in particular fixed formats. The canonical example
 of this is a binary executable (compiled program) a.out
 file, whose format is defined in a.out.h and possibly
 exec.h in the standard include directory. These files
 have a `magic number' stored in a particular place near
 the beginning of the file that tells the UNIX operating
 system that the file is a binary executable, and which of
 several types thereof. The concept of `magic number' has
 been applied by extension to data files. Any file with
 some invariant identifier at a small fixed offset into the
 file can usually be described in this way. The informa
 tion in these files is read from the magic file
 /usr/share/magic.

 If an argument appears to be an ASCII file, file attempts
Exhibit C Page 1

5/1/2017 UNIX man pages : file ()

https://web-beta.archive.org/web/20010810082609/http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file 2/7

 to guess its language. The language tests look for

 Copyright but distributable 1

FILE(1) FILE(1)

 particular strings (cf names.h) that can appear anywhere
 in the first few blocks of a file. For example, the key
 word .br indicates that the file is most likely a troff(1)
 input file, just as the keyword struct indicates a C pro
 gram. These tests are less reliable than the previous two
 groups, so they are performed last. The language test
 routines also test for some miscellany (such as tar(1)
 archives) and determine whether an unknown file should be
 labelled as `ascii text' or `data'.

OPTIONS

 -b Do not prepend filenames to output lines (brief
 mode).

 -c Cause a checking printout of the parsed form of
 the magic file. This is usually used in conjunc
 tion with -m to debug a new magic file before
 installing it.

 -f namefile
 Read the names of the files to be examined from
 namefile (one per line) before the argument list.
 Either namefile or at least one filename argument
 must be present; to test the standard input, use
 ``-'' as a filename argument.

 -m list Specify an alternate list of files containing
 magic numbers. This can be a single file, or a
 colon-separated list of files.

 -n Force stdout to be flushed after check a file.
 This is only useful if checking a list of files.
 It is intended to be used by programs want file
 type output from a pipe.

 -v Print the version of the program and exit.

 -z Try to look inside compressed files.

 -L option causes symlinks to be followed, as the
 like-named option in ls(1). (on systems that sup
 port symbolic links).

 -s Normally, file only attempts to read and determine
 the type of argument files which stat(2) reports
 are ordinary files. This prevents problems,
 because reading special files may have peculiar
 consequences. Specifying the -s option causes
 file to also read argument files which are block
 or character special files. This is useful for
 determining the filesystem types of the data in
 raw disk partitions, which are block special
 files. This option also causes file to disregard
 the file size as reported by stat(2) since on some

 Copyright but distributable 2

FILE(1) FILE(1)

 systems it reports a zero size for raw disk parti

Exhibit C Page 2

5/1/2017 UNIX man pages : file ()

https://web-beta.archive.org/web/20010810082609/http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file 3/7

 tions.

FILES

 /usr/share/magic - default list of magic numbers

ENVIRONMENT

 The environment variable MAGIC can be used to set the
 default magic number files.

SEE ALSO

 magic(4) - description of magic file format.
 strings(1), od(1), hexdump(1) - tools for examining non-
 textfiles.

STANDARDS CONFORMANCE

 This program is believed to exceed the System V Interface
 Definition of FILE(CMD), as near as one can determine from
 the vague language contained therein. Its behaviour is
 mostly compatible with the System V program of the same
 name. This version knows more magic, however, so it will
 produce different (albeit more accurate) output in many
 cases.

 The one significant difference between this version and
 System V is that this version treats any white space as a
 delimiter, so that spaces in pattern strings must be
 escaped. For example,
 >10 string language impress (imPRESS data)
 in an existing magic file would have to be changed to
 >10 string language\ impress (imPRESS data)
 In addition, in this version, if a pattern string contains
 a backslash, it must be escaped. For example
 0 string \begindata Andrew Toolkit document
 in an existing magic file would have to be changed to
 0 string \\begindata Andrew Toolkit document

 SunOS releases 3.2 and later from Sun Microsystems include
 a file(1) command derived from the System V one, but with
 some extensions. My version differs from Sun's only in
 minor ways. It includes the extension of the `&' opera
 tor, used as, for example,
 >16 long&0x7fffffff >0 not stripped

MAGIC DIRECTORY

 The magic file entries have been collected from various
 sources, mainly USENET, and contributed by various
 authors. Christos Zoulas (address below) will collect
 additional or corrected magic file entries. A consolida
 tion of magic file entries will be distributed periodi
 cally.

 The order of entries in the magic file is significant.
Exhibit C Page 3

5/1/2017 UNIX man pages : file ()

https://web-beta.archive.org/web/20010810082609/http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file 4/7

 Depending on what system you are using, the order that

 Copyright but distributable 3

FILE(1) FILE(1)

 they are put together may be incorrect. If your old file
 command uses a magic file, keep the old magic file around
 for comparison purposes (rename it to
 /usr/share/magic.orig).

EXAMPLES

 $ file file.c file /dev/hda
 file.c: C program text
 file: ELF 32-bit LSB executable, Intel 80386, version 1,
 dynamically linked, not stripped
 /dev/hda: block special

 $ file -s /dev/hda{,1,2,3,4,5,6,7,8,9,10}
 /dev/hda: x86 boot sector
 /dev/hda1: Linux/i386 ext2 filesystem
 /dev/hda2: x86 boot sector
 /dev/hda3: x86 boot sector, extended partition table
 /dev/hda4: Linux/i386 ext2 filesystem
 /dev/hda5: Linux/i386 swap file
 /dev/hda6: Linux/i386 swap file
 /dev/hda7: Linux/i386 swap file
 /dev/hda8: Linux/i386 swap file
 /dev/hda9: empty
 /dev/hda10: empty

HISTORY

 There has been a file command in every UNIX since at least
 Research Version 6 (man page dated January, 1975). The
 System V version introduced one significant major change:
 the external list of magic number types. This slowed the
 program down slightly but made it a lot more flexible.

 This program, based on the System V version, was written
 by Ian Darwin without looking at anybody else's source
 code.

 John Gilmore revised the code extensively, making it bet
 ter than the first version. Geoff Collyer found several
 inadequacies and provided some magic file entries. The
 program has undergone continued evolution since.

AUTHOR

 Written by Ian F. Darwin, UUCP address {utzoo |
 ihnp4}!darwin!ian, Internet address ian@sq.com, postal
 address: P.O. Box 603, Station F, Toronto, Ontario, CANADA
 M4Y 2L8.

 Altered by Rob McMahon, cudcv@warwick.ac.uk, 1989, to
 extend the `&' operator from simple `x&y; != 0' to `x&y; op
 z'.

 Altered by Guy Harris, guy@netapp.com, 1993, to:

 put the ``old-style'' `&' operator back the way it Exhibit C Page 4

5/1/2017 UNIX man pages : file ()

https://web-beta.archive.org/web/20010810082609/http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file 5/7

 Copyright but distributable 4

FILE(1) FILE(1)

 was, because 1) Rob McMahon's change broke the pre
 vious style of usage, 2) the SunOS ``new-style''
 `&' operator, which this version of file supports,
 also handles `x&y; op z', and 3) Rob's change wasn't
 documented in any case;

 put in multiple levels of `>';

 put in ``beshort'', ``leshort'', etc. keywords to
 look at numbers in the file in a specific byte
 order, rather than in the native byte order of the
 process running file.

 Changes by Ian Darwin and various authors including Chris
 tos Zoulas (christos@astron.com), 1990-1999.

LEGAL NOTICE

 Copyright (c) Ian F. Darwin, Toronto, Canada, 1986, 1987,
 1988, 1989, 1990, 1991, 1992, 1993.

 This software is not subject to and may not be made sub
 ject to any license of the American Telephone and Tele
 graph Company, Sun Microsystems Inc., Digital Equipment
 Inc., Lotus Development Inc., the Regents of the Univer
 sity of California, The X Consortium or MIT, or The Free
 Software Foundation.

 This software is not subject to any export provision of
 the United States Department of Commerce, and may be
 exported to any country or planet.

 Permission is granted to anyone to use this software for
 any purpose on any computer system, and to alter it and
 redistribute it freely, subject to the following restric
 tions:

 1. The author is not responsible for the consequences of
 use of this software, no matter how awful, even if they
 arise from flaws in it.

 2. The origin of this software must not be misrepresented,
 either by explicit claim or by omission. Since few users
 ever read sources, credits must appear in the documenta
 tion.

 3. Altered versions must be plainly marked as such, and
 must not be misrepresented as being the original software.
 Since few users ever read sources, credits must appear in
 the documentation.

 4. This notice may not be removed or altered.

 A few support files (getopt, strtok) distributed with this
 package are by Henry Spencer and are subject to the same

 Copyright but distributable 5

FILE(1) FILE(1)

 terms as above.

 A few simple support files (strtol, strchr) distributed
Exhibit C Page 5

5/1/2017 UNIX man pages : file ()

https://web-beta.archive.org/web/20010810082609/http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file 6/7

 with this package are in the public domain; they are so
 marked.

 The files tar.h and is_tar.c were written by John Gilmore
 from his public-domain tar program, and are not covered by
 the above restrictions.

BUGS

 There must be a better way to automate the construction of
 the Magic file from all the glop in Magdir. What is it?
 Better yet, the magic file should be compiled into binary
 (say, ndbm(3) or, better yet, fixed-length ASCII strings
 for use in heterogenous network environments) for faster
 startup. Then the program would run as fast as the Ver
 sion 7 program of the same name, with the flexibility of
 the System V version.

 File uses several algorithms that favor speed over accu
 racy, thus it can be misled about the contents of ASCII
 files.

 The support for ASCII files (primarily for programming
 languages) is simplistic, inefficient and requires recom
 pilation to update.

 There should be an ``else'' clause to follow a series of
 continuation lines.

 The magic file and keywords should have regular expression
 support. Their use of ASCII TAB as a field delimiter is
 ugly and makes it hard to edit the files, but is
 entrenched.

 It might be advisable to allow upper-case letters in key
 words for e.g., troff(1) commands vs man page macros.
 Regular expression support would make this easy.

 The program doesn't grok FORTRAN. It should be able to
 figure FORTRAN by seeing some keywords which appear
 indented at the start of line. Regular expression support
 would make this easy.

 The list of keywords in ascmagic probably belongs in the
 Magic file. This could be done by using some keyword like
 `*' for the offset value.

 Another optimisation would be to sort the magic file so
 that we can just run down all the tests for the first
 byte, first word, first long, etc, once we have fetched
 it. Complain about conflicts in the magic file entries.
 Make a rule that the magic entries sort based on file

 Copyright but distributable 6

FILE(1) FILE(1)

 offset rather than position within the magic file?

 The program should provide a way to give an estimate of
 ``how good'' a guess is. We end up removing guesses (e.g.
 ``From '' as first 5 chars of file) because they are not
 as good as other guesses (e.g. ``Newsgroups:'' versus
 "Return-Path:"). Still, if the others don't pan out, it
 should be possible to use the first guess.

 This program is slower than some vendors' file commands.

Exhibit C Page 6

5/1/2017 UNIX man pages : file ()

https://web-beta.archive.org/web/20010810082609/http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file 7/7

 This manual page, and particularly this section, is too
 long.

AVAILABILITY

 You can obtain the original author's latest version by
 anonymous FTP on ftp.astron.com in the directory
 /pub/file/file-X.YY.tar.gz

 Copyright but distributable 7

Š 1994 Man-cgi 1.15, Panagiotis Christias <christia@theseas.ntua.gr>

Exhibit C Page 7

4/30/2017 UNIX man pages : file ()

https://web-beta.archive.org/web/20010810082609/http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file 1/7

NOTE: click here if you get an empty page.

FILE(1) FILE(1)

NAME

 file - determine file type

SYNOPSIS

 file [-bcnsvzL] [-f namefile] [-m magicfiles] file
 ...

DESCRIPTION

 This manual page documents version 3.27 of the file com
 mand. File tests each argument in an attempt to classify
 it. There are three sets of tests, performed in this
 order: filesystem tests, magic number tests, and language
 tests. The first test that succeeds causes the file type
 to be printed.

 The type printed will usually contain one of the words
 text (the file contains only ASCII characters and is prob
 ably safe to read on an ASCII terminal), executable (the
 file contains the result of compiling a program in a form
 understandable to some UNIX kernel or another), or data
 meaning anything else (data is usually `binary' or non-
 printable). Exceptions are well-known file formats (core
 files, tar archives) that are known to contain binary
 data. When modifying the file /usr/share/magic or the
 program itself, preserve these keywords . People depend
 on knowing that all the readable files in a directory have
 the word ``text'' printed. Don't do as Berkeley did -
 change ``shell commands text'' to ``shell script''.

 The filesystem tests are based on examining the return
 from a stat(2) system call. The program checks to see if
 the file is empty, or if it's some sort of special file.
 Any known file types appropriate to the system you are
 running on (sockets, symbolic links, or named pipes
 (FIFOs) on those systems that implement them) are intuited
 if they are defined in the system header file sys/stat.h.

 The magic number tests are used to check for files with
 data in particular fixed formats. The canonical example
 of this is a binary executable (compiled program) a.out
 file, whose format is defined in a.out.h and possibly
 exec.h in the standard include directory. These files
 have a `magic number' stored in a particular place near
 the beginning of the file that tells the UNIX operating
 system that the file is a binary executable, and which of
 several types thereof. The concept of `magic number' has
 been applied by extension to data files. Any file with

http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file Go

2
100 captures
3 Sep 1999 - 23 Jun 2015

Exhibit C Page 8

4/30/2017 UNIX man pages : file ()

https://web-beta.archive.org/web/20010810082609/http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file 2/7

 some invariant identifier at a small fixed offset into the
 file can usually be described in this way. The informa
 tion in these files is read from the magic file
 /usr/share/magic.

 If an argument appears to be an ASCII file, file attempts
 to guess its language. The language tests look for

 Copyright but distributable 1

FILE(1) FILE(1)

 particular strings (cf names.h) that can appear anywhere
 in the first few blocks of a file. For example, the key
 word .br indicates that the file is most likely a troff(1)
 input file, just as the keyword struct indicates a C pro
 gram. These tests are less reliable than the previous two
 groups, so they are performed last. The language test
 routines also test for some miscellany (such as tar(1)
 archives) and determine whether an unknown file should be
 labelled as `ascii text' or `data'.

OPTIONS

 -b Do not prepend filenames to output lines (brief
 mode).

 -c Cause a checking printout of the parsed form of
 the magic file. This is usually used in conjunc
 tion with -m to debug a new magic file before
 installing it.

 -f namefile
 Read the names of the files to be examined from
 namefile (one per line) before the argument list.
 Either namefile or at least one filename argument
 must be present; to test the standard input, use
 ``-'' as a filename argument.

 -m list Specify an alternate list of files containing
 magic numbers. This can be a single file, or a
 colon-separated list of files.

 -n Force stdout to be flushed after check a file.
 This is only useful if checking a list of files.
 It is intended to be used by programs want file
 type output from a pipe.

 -v Print the version of the program and exit.

 -z Try to look inside compressed files.

 -L option causes symlinks to be followed, as the
 like-named option in ls(1). (on systems that sup
 port symbolic links).

 -s Normally, file only attempts to read and determine
 the type of argument files which stat(2) reports
 are ordinary files. This prevents problems,
 because reading special files may have peculiar
 consequences. Specifying the -s option causes
 file to also read argument files which are block
 or character special files. This is useful for
 determining the filesystem types of the data in
 raw disk partitions, which are block special
 files. This option also causes file to disregard
 the file size as reported by stat(2) since on some

http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file Go

2
100 captures
3 Sep 1999 - 23 Jun 2015

Exhibit C Page 9

4/30/2017 UNIX man pages : file ()

https://web-beta.archive.org/web/20010810082609/http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file 3/7

 Copyright but distributable 2

FILE(1) FILE(1)

 systems it reports a zero size for raw disk parti
 tions.

FILES

 /usr/share/magic - default list of magic numbers

ENVIRONMENT

 The environment variable MAGIC can be used to set the
 default magic number files.

SEE ALSO

 magic(4) - description of magic file format.
 strings(1), od(1), hexdump(1) - tools for examining non-
 textfiles.

STANDARDS CONFORMANCE

 This program is believed to exceed the System V Interface
 Definition of FILE(CMD), as near as one can determine from
 the vague language contained therein. Its behaviour is
 mostly compatible with the System V program of the same
 name. This version knows more magic, however, so it will
 produce different (albeit more accurate) output in many
 cases.

 The one significant difference between this version and
 System V is that this version treats any white space as a
 delimiter, so that spaces in pattern strings must be
 escaped. For example,
 >10 string language impress (imPRESS data)
 in an existing magic file would have to be changed to
 >10 string language\ impress (imPRESS data)
 In addition, in this version, if a pattern string contains
 a backslash, it must be escaped. For example
 0 string \begindata Andrew Toolkit document
 in an existing magic file would have to be changed to
 0 string \\begindata Andrew Toolkit document

 SunOS releases 3.2 and later from Sun Microsystems include
 a file(1) command derived from the System V one, but with
 some extensions. My version differs from Sun's only in
 minor ways. It includes the extension of the `&' opera
 tor, used as, for example,
 >16 long&0x7fffffff >0 not stripped

MAGIC DIRECTORY

 The magic file entries have been collected from various
 sources, mainly USENET, and contributed by various
 authors. Christos Zoulas (address below) will collect

http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file Go

2
100 captures
3 Sep 1999 - 23 Jun 2015

Exhibit C Page 10

4/30/2017 UNIX man pages : file ()

https://web-beta.archive.org/web/20010810082609/http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file 4/7

 additional or corrected magic file entries. A consolida
 tion of magic file entries will be distributed periodi
 cally.

 The order of entries in the magic file is significant.
 Depending on what system you are using, the order that

 Copyright but distributable 3

FILE(1) FILE(1)

 they are put together may be incorrect. If your old file
 command uses a magic file, keep the old magic file around
 for comparison purposes (rename it to
 /usr/share/magic.orig).

EXAMPLES

 $ file file.c file /dev/hda
 file.c: C program text
 file: ELF 32-bit LSB executable, Intel 80386, version 1,
 dynamically linked, not stripped
 /dev/hda: block special

 $ file -s /dev/hda{,1,2,3,4,5,6,7,8,9,10}
 /dev/hda: x86 boot sector
 /dev/hda1: Linux/i386 ext2 filesystem
 /dev/hda2: x86 boot sector
 /dev/hda3: x86 boot sector, extended partition table
 /dev/hda4: Linux/i386 ext2 filesystem
 /dev/hda5: Linux/i386 swap file
 /dev/hda6: Linux/i386 swap file
 /dev/hda7: Linux/i386 swap file
 /dev/hda8: Linux/i386 swap file
 /dev/hda9: empty
 /dev/hda10: empty

HISTORY

 There has been a file command in every UNIX since at least
 Research Version 6 (man page dated January, 1975). The
 System V version introduced one significant major change:
 the external list of magic number types. This slowed the
 program down slightly but made it a lot more flexible.

 This program, based on the System V version, was written
 by Ian Darwin without looking at anybody else's source
 code.

 John Gilmore revised the code extensively, making it bet
 ter than the first version. Geoff Collyer found several
 inadequacies and provided some magic file entries. The
 program has undergone continued evolution since.

AUTHOR

 Written by Ian F. Darwin, UUCP address {utzoo |
 ihnp4}!darwin!ian, Internet address ian@sq.com, postal
 address: P.O. Box 603, Station F, Toronto, Ontario, CANADA
 M4Y 2L8.

 Altered by Rob McMahon, cudcv@warwick.ac.uk, 1989, to
 extend the `&' operator from simple `x&y; != 0' to `x&y; op

http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file Go

2
100 captures
3 Sep 1999 - 23 Jun 2015

Exhibit C Page 11

4/30/2017 UNIX man pages : file ()

https://web-beta.archive.org/web/20010810082609/http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file 5/7

 z'.

 Altered by Guy Harris, guy@netapp.com, 1993, to:

 put the ``old-style'' `&' operator back the way it

 Copyright but distributable 4

FILE(1) FILE(1)

 was, because 1) Rob McMahon's change broke the pre
 vious style of usage, 2) the SunOS ``new-style''
 `&' operator, which this version of file supports,
 also handles `x&y; op z', and 3) Rob's change wasn't
 documented in any case;

 put in multiple levels of `>';

 put in ``beshort'', ``leshort'', etc. keywords to
 look at numbers in the file in a specific byte
 order, rather than in the native byte order of the
 process running file.

 Changes by Ian Darwin and various authors including Chris
 tos Zoulas (christos@astron.com), 1990-1999.

LEGAL NOTICE

 Copyright (c) Ian F. Darwin, Toronto, Canada, 1986, 1987,
 1988, 1989, 1990, 1991, 1992, 1993.

 This software is not subject to and may not be made sub
 ject to any license of the American Telephone and Tele
 graph Company, Sun Microsystems Inc., Digital Equipment
 Inc., Lotus Development Inc., the Regents of the Univer
 sity of California, The X Consortium or MIT, or The Free
 Software Foundation.

 This software is not subject to any export provision of
 the United States Department of Commerce, and may be
 exported to any country or planet.

 Permission is granted to anyone to use this software for
 any purpose on any computer system, and to alter it and
 redistribute it freely, subject to the following restric
 tions:

 1. The author is not responsible for the consequences of
 use of this software, no matter how awful, even if they
 arise from flaws in it.

 2. The origin of this software must not be misrepresented,
 either by explicit claim or by omission. Since few users
 ever read sources, credits must appear in the documenta
 tion.

 3. Altered versions must be plainly marked as such, and
 must not be misrepresented as being the original software.
 Since few users ever read sources, credits must appear in
 the documentation.

 4. This notice may not be removed or altered.

 A few support files (getopt, strtok) distributed with this
 package are by Henry Spencer and are subject to the same

 Copyright but distributable 5

http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file Go

2
100 captures
3 Sep 1999 - 23 Jun 2015

Exhibit C Page 12

4/30/2017 UNIX man pages : file ()

https://web-beta.archive.org/web/20010810082609/http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file 6/7

FILE(1) FILE(1)

 terms as above.

 A few simple support files (strtol, strchr) distributed
 with this package are in the public domain; they are so
 marked.

 The files tar.h and is_tar.c were written by John Gilmore
 from his public-domain tar program, and are not covered by
 the above restrictions.

BUGS

 There must be a better way to automate the construction of
 the Magic file from all the glop in Magdir. What is it?
 Better yet, the magic file should be compiled into binary
 (say, ndbm(3) or, better yet, fixed-length ASCII strings
 for use in heterogenous network environments) for faster
 startup. Then the program would run as fast as the Ver
 sion 7 program of the same name, with the flexibility of
 the System V version.

 File uses several algorithms that favor speed over accu
 racy, thus it can be misled about the contents of ASCII
 files.

 The support for ASCII files (primarily for programming
 languages) is simplistic, inefficient and requires recom
 pilation to update.

 There should be an ``else'' clause to follow a series of
 continuation lines.

 The magic file and keywords should have regular expression
 support. Their use of ASCII TAB as a field delimiter is
 ugly and makes it hard to edit the files, but is
 entrenched.

 It might be advisable to allow upper-case letters in key
 words for e.g., troff(1) commands vs man page macros.
 Regular expression support would make this easy.

 The program doesn't grok FORTRAN. It should be able to
 figure FORTRAN by seeing some keywords which appear
 indented at the start of line. Regular expression support
 would make this easy.

 The list of keywords in ascmagic probably belongs in the
 Magic file. This could be done by using some keyword like
 `*' for the offset value.

 Another optimisation would be to sort the magic file so
 that we can just run down all the tests for the first
 byte, first word, first long, etc, once we have fetched
 it. Complain about conflicts in the magic file entries.
 Make a rule that the magic entries sort based on file

 Copyright but distributable 6

FILE(1) FILE(1)

 offset rather than position within the magic file?

 The program should provide a way to give an estimate of
 ``how good'' a guess is. We end up removing guesses (e.g.
 ``From '' as first 5 chars of file) because they are not
 as good as other guesses (e.g. ``Newsgroups:'' versus

http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file Go

2
100 captures
3 Sep 1999 - 23 Jun 2015

Exhibit C Page 13

4/30/2017 UNIX man pages : file ()

https://web-beta.archive.org/web/20010810082609/http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file 7/7

 "Return-Path:"). Still, if the others don't pan out, it
 should be possible to use the first guess.

 This program is slower than some vendors' file commands.

 This manual page, and particularly this section, is too
 long.

AVAILABILITY

 You can obtain the original author's latest version by
 anonymous FTP on ftp.astron.com in the directory
 /pub/file/file-X.YY.tar.gz

 Copyright but distributable 7

Š 1994 Man-cgi 1.15, Panagiotis Christias <christia@theseas.ntua.gr>

http://unixhelp.ed.ac.uk:80/CGI/man-cgi?file Go

2
100 captures
3 Sep 1999 - 23 Jun 2015

Exhibit C Page 14

